Skip to main content

Mechanical Model of Fiber Morphogenesis in the Liver

  • Conference paper
  • First Online:
Proceedings of XXIV AIMETA Conference 2019 (AIMETA 2019)

Abstract

We give a description of fibroblast cell diffusion in a soft tissue, paying special attention to the coupling of force, matter and microforce balance laws through a suitable dissipation principle. To this end we cast our framework into a multi-level schematics, comprising both kinematics and kinetics, which is based on a characterization of the free energy. This way we lay down first a force balance law, where force and stress fields are defined as power conjugate quantities to velocity fields and their gradients, then we give a species molar balance law, with chemical potential test fields, as power conjugate quantities to the rate of change of species concentration, and finally a microforce balance law. The main feature of this framework is the constitutive expression for the chemical potential which turns out to be split in a natural way into a term derived from the homogeneous convex part of the free energy and an active external chemical potential giving rise to the spinodal decomposition. The active part of the chemical potential is given an expression depending on the cell density and resembling the one defined in [29], where it is meant to characterize an upward cell diffusion induced by cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper we will consistently denote test fields by underlying the corresponding symbol.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Google Scholar 

  2. Anand, L.: A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations. J. Mech. Phys. Solids 60, 1983–2002 (2012)

    Google Scholar 

  3. Bates, P.W., Fife, P.C.: Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening. Phys. D 43, 335–348 (1990)

    Google Scholar 

  4. Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804–828 (2011)

    Google Scholar 

  5. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Google Scholar 

  6. Cahn, J.W.: Spinodal decomposition. Trans. Metall. Soc. AIME 242, 89–103 (1968)

    Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Google Scholar 

  9. Carter, S.B.: Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208, 1183–1187 (1965)

    Google Scholar 

  10. Carter, S.B.: Haptotaxis and the mechanism of cell motility. Nature 213, 256–260 (1967)

    Google Scholar 

  11. Cates, M.E., Tailleur, J.: Motility-induced phase separation. Ann. Rev. Condens. Matt. Phys. 6, 219–244 (2015)

    Google Scholar 

  12. Chatelain, C., Balois, T., Ciarletta, P., BenAmar, M.: Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13, 115013 (2011)

    Google Scholar 

  13. Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes. J. Electrochem. Soc. 161, F3164–F3172 (2014)

    Google Scholar 

  14. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational. Mech. Anal. 13, 167–178 (1963)

    Google Scholar 

  15. COMSOL, Inc.: COMSOL Multiphysics® Reference Manual, version 5.3

    Google Scholar 

  16. Cui, Z.W., Gao, F., Qu, J.M.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)

    Google Scholar 

  17. Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014)

    Google Scholar 

  18. Eshelby, J.D.: Elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Google Scholar 

  19. Fife, P.C., Penrose, O.: Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. Electron. J. Differ. Equ. 1–49, 1995 (1995)

    Google Scholar 

  20. Foty, R.A., Steinberg, M.S.: The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005)

    Google Scholar 

  21. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Google Scholar 

  22. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Google Scholar 

  23. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  24. Larché, F., Cahn, J.W.: Linear theory of thermomechanical equilibrium of solids under stress. Acta Metall. 21, 1051–1063 (1973)

    Google Scholar 

  25. Larché, F., Cahn, J.W.: Overview no. 41 The interactions of composition and stress in crystalline solids. Acta Metallurgica 33, 331–357 (1985)

    Google Scholar 

  26. Meinhardt, H.: Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr. Top. Dev. Biol. 81, 1–63 (2008)

    Google Scholar 

  27. Murray, J.D., Oster, G.F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19, 265–279 (1984)

    Google Scholar 

  28. Murray, J.D., Oster, G.F.: Generation of biological pattern and form. IMA J. Math. Appl. Med. Biol. 1, 51–75 (1984)

    Google Scholar 

  29. Oster, G.F., Murray, J.D., Harris, A.K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. exp. Morph. 78, 83–125 (1983)

    Google Scholar 

  30. Podio-Guidugli, P.: Models of phase segregation and diffusion of atomic species on a lattice. Ricerche mat. 55, 105–118 (2006)

    Google Scholar 

  31. Preziosi, L., Scianna, M.: Mathematical models of the interaction of cells and cell aggregates with the extracellular matrix. In: Preziosi, L., Chaplain, M., Pugliese, A. (eds.) Mathematical Models and Methods for Living Systems, pp. 131–210. Springer (2016)

    Google Scholar 

  32. Steinberg, M.S.: Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007)

    Google Scholar 

  33. Tatone, A., Recrosi, F., Repetto, R., Guidoboni, G.: From species diffusion to poroelasticity and the modeling of lamina cribrosa. J. Mech. Phys. Solids 124, 849–870 (2019)

    Google Scholar 

  34. Tiribocchi, A., Wittkowski, R., Marenduzzo, D., Cates, M.E.: Active model H: scalar active matter in a momentum-conserving fluid. Phys. Rev. Lett. 115, 188302–1–5 (2015)

    Google Scholar 

  35. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London Ser. B Biol. Sci. 237, 37–72 (1952)

    Google Scholar 

  36. Wittkowski, R., Tiribocchi, A., Stenhammar, J., Allen, R.J., Marenduzzo, D., Cates, M.E.: Scalar \(\varphi ^4\) field theory for active-particle phase separation. Nat. Commun. 5, 4351 (2014)

    Google Scholar 

  37. Wu, C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49, 1771–1794 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amabile Tatone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Recrosi, F., Repetto, R., Tatone, A., Tomassetti, G. (2020). Mechanical Model of Fiber Morphogenesis in the Liver. In: Carcaterra, A., Paolone, A., Graziani, G. (eds) Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41057-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41057-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41056-8

  • Online ISBN: 978-3-030-41057-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics