Skip to main content
Log in

Density-dependent dispersal in integrodifference equations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that density-dependent dispersal probability can act as a mechanism for coexistence of otherwise non-coexisting competitors. We show that in time-varying habitats, an intermediate dispersal probability will evolve. Analytically, we find that the spreading speed for the integrodifference equation with density-dependent dispersal probability is not linearly determined. Furthermore, the next-generation operator is not compact and, in general, neither order-preserving nor monotonicity-preserving. We give two explicit examples of non-monotone, discontinuous traveling-wave profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In: Goldstein, J.A. (ed.) Partial Differential Equations and related Topics. Lect. Notes in Math. 446, Springer, New York (1975)

  2. Berestycki H., Hamel F. and Roques L. (2005). Analysis of the periodically fragmented environment model. I. species persistence. J. Math. Biol. 51: 75–113

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonafede S., Cirmi G.R. and Tedeev A.F. (1998). Finite speed of propagation for the porous media equation. SIAM J. Math. Anal. 29(6): 1381–1398

    Article  MATH  MathSciNet  Google Scholar 

  4. Botsford L.W., Hastings A. and Gaines S.D. (2001). Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol. Lett. 4: 144–150

    Article  Google Scholar 

  5. Cantrell R.S. and Cosner C. (1993). Should a park be an island?. SIAM Appl. Math. 53: 219–252

    Article  MATH  MathSciNet  Google Scholar 

  6. Cantrell, R.S., Cosner, C.: Spatial ecology via reaction-diffusion equations. In: Mathematical and Computational Biology. Wiley, New York (2003)

  7. Clark J.S., Fastie D., Hurtt G., Jackson S.T., Johnson C., King G.A., Lewis M.A., Lynch J., Pacala S., Prentice C., Schupp E., Webb III T. and Wyckoff P. (1998). Reid’s paradox of rapid plant migration. Bioscience 48: 13–24

    Article  Google Scholar 

  8. Cobbold C., Lewis M.A., Lutscher F. and Roland J. (2005). How parasitism affects critical patch size in a host-parasitoid system: application to Forest Tent Caterpillar. Theor. Popul. Biol. 67(2): 820–828

    Google Scholar 

  9. Cruywagen G.C., Kareiva P., Lewis M.A. and Murray J.D. (1996). Competition in a spatially heterogeneous environment: Modelling the risk of spread of a genetically engineered population. Theor. Popul. Biol. 49(1): 1–38

    Article  MATH  Google Scholar 

  10. Denno R.F. and Roderick G.K. (1992). Density-related dispersal in grasshoppers—effects of interspecific crowding. Ecology 73: 1323–1334

    Article  Google Scholar 

  11. Dieckmann U. (1997). Can adaptive dynamics invade?. Trends Ecol. Evol. 12: 128–131

    Article  Google Scholar 

  12. Dieckmann U., O’Hara B. and Weisser W. (1999). The evolutionary ecology of dispersal. Trends Ecol. Evol. 14: 88–90

    Article  Google Scholar 

  13. Dockery J., Hutson V., Mischaikow K. and Pernarowski M. (1998). The evolution of slow dispersal rates: a reaction-diffusion model. J. Math. Biol. 37: 61–83

    Article  MATH  MathSciNet  Google Scholar 

  14. Fagan W.F. and Lutscher F. (2006). The average dispersal success approximation: a bridge linking home range size, natal dispersal and metapopulation dynamics to critical patch size and reserve design. Ecol. Appl. 16(2): 820–828

    Article  Google Scholar 

  15. Fisher R.A. (1937). The advance of advantageous genes. Ann. Eugenics 7: 355–369

    Google Scholar 

  16. Gurney W.S.C. and Nisbet R.M. (1975). The regulation of inhomogeneous populations. J. Theor. Biol. 52: 441–457

    Article  Google Scholar 

  17. Hadeler K.P. (1994). Travelling fronts for correlated random walks. Can. Appl. Math. Quart. 2: 27–43

    MATH  MathSciNet  Google Scholar 

  18. Hadeler K.P. and Lewis M.A. (2002). Spatial dynamics of the diffusive logistic equation with sedentary component. Can. Appl. Math. Quart. 10: 473–500

    MATH  MathSciNet  Google Scholar 

  19. Hamilton W.D. and May R.M. (1977). Dispersal in stable habitats. Nature 269: 578–581

    Article  Google Scholar 

  20. Harada T., Tabuchi R. and Koura J. (1997). Mogratory syndrome in the water strider aquarius paludum (heteroptera: Gerridae) reared in high versus low nymphal densities. Eur. J. Entomol. 94: 445–452

    Google Scholar 

  21. Hardin D.P., Takáč P. and Webb G.F. (1990). Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28: 1–20

    Article  MATH  MathSciNet  Google Scholar 

  22. Hastings A., Cuddington K., Davies K.F., Dugaw C.J., Elmendorf A., Freestone A., Harrison S., Holland M., Lambrinos J., Malvadkar U., Melbourne B.A., Moore K., Taylor C. and Thomson D. (2005). The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8: 91–101

    Article  Google Scholar 

  23. Hillen T. (2003). Transport equations with resting phase. Eur. J. Appl. Math. 14: 613–636

    Article  MATH  MathSciNet  Google Scholar 

  24. Hosono Y. (1998). The minimal speed of traveling fronts for a diffusive lotka volterra competition model. Bull. Math. Biol. 60: 435–458

    Article  MATH  Google Scholar 

  25. Hutson V., Martinez S., Mischaikow K. and Vickers G.T. (2003). The evolution of dispersal. J. Math. Biol. 46: 483–517

    Article  MathSciNet  Google Scholar 

  26. Hutson V., Mischaikow K. and Poláćik P. (2001). The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43: 501–533

    Article  MATH  MathSciNet  Google Scholar 

  27. Johnson M.L. and Gaines M.S. (1990). Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecol. Syst. 21: 449–480

    Article  Google Scholar 

  28. Kawasaki K. and Shigesada N. (2007). An integrodifference model for biological invasions in a periodically fragmented environment. Jpn. J. Ind. Appl. Math. 24: 3–15

    Article  MATH  MathSciNet  Google Scholar 

  29. Kinezaki N., Kawasaki K., Takasu F. and Shigesada N. (2003). Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64: 291–302

    Article  MATH  Google Scholar 

  30. Kolmogorov A.N., Petrovskii I.G. and Piskunov N.S. (1937). A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjol. Moskovskovo Gos. Univ. 17: 1–72

    Google Scholar 

  31. Kot M. (1992). Discrete-time travelling waves: ecological examples. J. Math. Biol. 30: 413–436

    Article  MATH  MathSciNet  Google Scholar 

  32. Kot M., Lewis M.A. and Driessche P. (1996). Dispersal data and the spread of invading organisms. Ecology 77: 2027–2024

    Article  Google Scholar 

  33. Kot M. and Schaffer W.M. (1986). Discrete-time growth-dispersal models. Math. Biosci. 80: 109–136

    Article  MATH  MathSciNet  Google Scholar 

  34. Lewis M.A., Li B. and Weinberger H.F. (2002). Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45: 219–233

    Article  MATH  MathSciNet  Google Scholar 

  35. Lui R. (1983). Existence and stability of traveling wave solutions of a nonlinear integral operator. J. Math. Biol. 16: 199–220

    Article  MATH  MathSciNet  Google Scholar 

  36. Lui R. (1989). Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math. Biosci. 93: 269–295

    Article  MATH  MathSciNet  Google Scholar 

  37. Lui R. (1989). Biological growth and spread modeled by systems of recursions. II Biological theory. Math. Biosci. 93: 297–312

    Article  MATH  MathSciNet  Google Scholar 

  38. Lutscher F. (2007). A short note on short dispersal distances. Bull. Math. Biol. 69(5): 1615–1630

    Article  MathSciNet  MATH  Google Scholar 

  39. Lutscher F. and Lewis M.A. (2004). Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol. 48: 293–324

    Article  MATH  MathSciNet  Google Scholar 

  40. Lutscher F., Lewis M.A. and McCauley E. (2006). The effects of heterogeneity on population persistence and invasion in rivers. Bull. Math. Biol. 68(8): 2129–2160

    Article  MathSciNet  Google Scholar 

  41. Lutscher F., Pachepsky E. and Lewis M.A. (2005). The effect of dispersal patterns on stream populations. SIAM Appl. Math. 65(4): 1305–1327

    Article  MATH  MathSciNet  Google Scholar 

  42. Matthysen E. (2005). Density-dependent dispersal in birds and mammals. Ecography 28: 403–416

    Article  Google Scholar 

  43. Medlock J. and Kot M. (2003). Spreading diseases: integro-differential equations new and old. Math. Biosci. 184: 201–222

    Article  MATH  MathSciNet  Google Scholar 

  44. Murray J.D. (2001). Mathematical Biology I: An Introduction. Springer-Verlag, Berlin

    Google Scholar 

  45. Neubert M.G. and Caswell H. (2000). Demography and dispersal: calculation and sensitivity analysis of invasion speeds for structured populations. Ecology 81(6): 1613–1628

    Article  Google Scholar 

  46. Neubert M.G., Kot M. and Lewis M.A. (1995). Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48(1): 7–43

    Article  MATH  Google Scholar 

  47. Okubo A. and Levine S.A. (2001). Diffusion and ecological problems: modern perspectives. Springer, New York

    Google Scholar 

  48. Pachepsky E., Lutscher F., Nisbet R. and Lewis M.A. (2005). Persistence, spread and the drift paradox. Theor. Popul. Biol. 67: 61–73

    Article  MATH  Google Scholar 

  49. Sherratt J. and Marchant B.P. (1996). Nonsharp traveling wave fronts in the fisher equation with nonlinear degenerate diffusion. Appl. Math. Lett. 9: 33–38

    Article  MATH  MathSciNet  Google Scholar 

  50. Shigesada N., Kawasaki K. and Teramoto E. (1986). Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30: 143–160

    Article  MATH  MathSciNet  Google Scholar 

  51. Skellam J.G. (1951). Random dispersal in theoretical populations. Biometrika 38: 196–218

    MATH  MathSciNet  Google Scholar 

  52. Travis J.M.J., Murrell D.J. and Dytham C. (1999). The evolution of density-dependent dispersal. Proc. R. Soc. Lond. B 266: 1837–1842

    Article  Google Scholar 

  53. Metz J.A.J., Diekmann O. and van den Bosch F. (1990). The velocity of spatial population expansion. J. Math. Biol. 28: 529–565

    Article  MATH  MathSciNet  Google Scholar 

  54. Van Kirk R.W. and Lewis M.A. (1997). Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59(1): 107–137

    Article  MATH  Google Scholar 

  55. Veit R.R. and Lewis M.A. (1996). Dispersal, population growth and the Allee effect: dynamics of the house finch invasion in eastern North America. Am. Nat. 148(2): 255–274

    Article  Google Scholar 

  56. Volkov, D., Lui, R.: Spreading speed and traveling wave solutions of a partially sedentary population. IMA J. Appl. Math. (in press)

  57. Wang M.-H., Kot M. and Neubert M.G. (2002). Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44: 150–168

    Article  MATH  MathSciNet  Google Scholar 

  58. Weinberger H.F. (1982). Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13: 353–396

    Article  MATH  MathSciNet  Google Scholar 

  59. Weinberger H.F. (2002). On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45: 511–548

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof Lutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutscher, F. Density-dependent dispersal in integrodifference equations. J. Math. Biol. 56, 499–524 (2008). https://doi.org/10.1007/s00285-007-0127-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0127-1

Keywords

Mathematics Subject Classification (2000)

Navigation