Skip to main content
Log in

Effects of Heterogeneity on Spread and Persistence in Rivers

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The question how aquatic populations persist in rivers when individuals are constantly lost due to downstream drift has been termed the “drift paradox.” Recent modeling approaches have revealed diffusion-mediated persistence as a solution. We study logistically growing populations with and without a benthic stage and consider spatially varying growth rates. We use idealized hydrodynamic equations to link river cross-sectional area to flow speed and assume heterogeneity in the form of alternating patches, i.e., piecewise constant conditions. We derive implicit formulae for the persistence boundary and for the dispersion relation of the wave speed. We explicitly discuss the influence of flow speed, cross-sectional area and benthic stage on both persistence and upstream invasion speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J., 1995. Stream Ecology: Structure and Function of Running Waters. Chapman & Hall, London.

    Google Scholar 

  • Aronson, D., 1983. The role of diffusion in mathematical population biology: Skellam revisited. In: Levin, S. (Ed.), Mathematics in Biology and Medicine, Lecture Notes on Biomathematics, vol. 57. Springer-Verlag, Berlin, pp. 2–6.

    Google Scholar 

  • Aronson, D., Weinberger, H.F., 1975. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. (Ed.), Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, vol. 446. Springer-Verlag, Berlin, pp. 5–49.

    Chapter  Google Scholar 

  • Baker, R., Dunn, P., 1990. New Directions in Biological Control. Alan Liss, New York.

    Google Scholar 

  • Ballyk, M., Smith, H., 1999. A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci. 158, 95–126.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Ballyk, M., Dung, L., Jones, D.A., Smith, H., 1998. Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math. 59(2), 573–596.

    Article  MathSciNet  Google Scholar 

  • Bencala, K., Walters, R., 1983. Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model. Water Resources Res. 19(3), 718–724.

    Google Scholar 

  • Berestycki, H., Hamel, F., Roques, L., 2005. Analysis of the periodically fragmented environment model: Species persistence. J. Math. Biol. 51, 75–113.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Botsford, L.W., Hastings, A., Gaines, S.D., 2001. Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol. Lett. 4, 144–150.

    Article  Google Scholar 

  • Cantrell, R., Cosner, C., 1991. Diffusive logistic equations with indefinite weights: Population models in disrupted environments. II. SIAM J. Math. Anal. 22, 1043–1064.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1993. Should a park be an island? SIAM Appl. Math. 53, 219–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 2001. Spatial heterogeneity and critical patch size: Area effects via diffusion in closed environments. J. Theor. Biol. 209, 161–171.

    Article  PubMed  Google Scholar 

  • Cantrell, R.S., Cosner, C., 2003. Spatial Ecology via Reaction—Diffusion Equations. Mathematical and Computational Biology. Wiley, New York.

    Google Scholar 

  • Cruywagen, G., Kareiva, P., Lewis, M., Murray, J., 1996. Competition in a spatially heterogeneous environment: Modelling the risk of spread of a genetically engineered population. Theor. Popul. Biol. 49(1), 1–38.

    Article  PubMed  MATH  Google Scholar 

  • DeAngelis, D., Loreau, M., Neergaard, D., Mulholland, P., Marzolf, E., 1995. Modelling nutrient-periphyton dynamics in streams: The importance of transient storage zones. Ecol. Model. 80, 149–160.

    Article  Google Scholar 

  • Dent, C., Henry, J., 1999. Modelling nutrient-periphyton dynamics in streams with surface—subsurface exchange. Ecol. Model. 122, 97–116.

    Article  Google Scholar 

  • Eagleson, P., 1970. Dynamic Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • Einstein, A., 1906. Zur Theorie der Brownschen Bewegung. Ann. Phys. 19, 371–381.

    Article  Google Scholar 

  • Fisher, R., 1937. The advance of advantageous genes. Ann. Eugenics 7, 355–369.

    Google Scholar 

  • Gaylord, B., Gaines, S., 2000. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789.

    Article  PubMed  Google Scholar 

  • Giller, P., 2005. River restoration: seeking ecological standards. J. Appl. Ecol. 42, 201–207.

    Article  Google Scholar 

  • Hadeler, K., 1999. Reaction transport systems in biological modelling. In: Capasso, V., Diekmann, O. (Eds.), Mathematics Inspired by Biology, Lecture Notes Mathematics, vol. 1714. Springer-Verlag, Heidelberg, pp. 95–150.

    Chapter  Google Scholar 

  • Hadeler, K., Lewis, M., 2002. Spatial dynamics of the diffusive logistic equation with sedentary component. Can. Appl. Math. Quart. 10, 473–500.

    MATH  MathSciNet  Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K., Dugaw, C., Elmendorf, A., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B., Moore, K., Taylor, C., Thomson, D., 2005. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8, 91–101.

    Article  Google Scholar 

  • Hill, B., Herlihy, A., Kaufmann, P., Stevenson, R., McCormick, F., 2000. Use of periphyton assemblage data as an index of biotic integrity. J. North Am. Benthol. Soc. 19(1), 50–67.

    Article  Google Scholar 

  • Huisman, J., Arrayás, M., Ebert, U., Sommeijer, B., 2002. How do sinking phytoplankton species manage to persist. Am. Nat. 159, 245–254.

    Article  Google Scholar 

  • Kierstead, H., Slobodkin, L.B., 1953. The size of water masses containing plankton blooms. J. Marine Res. 12, 141–147.

    Google Scholar 

  • Kolmogorov, A., Petrovskii, I., Piskunov, N., 1937. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjol. Moskovskovo Gos. Univ. 17, 1–72.

    Google Scholar 

  • Kot, M., Schaffer, W.M., 1986. Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis, M., Schmitz, G., 1996. Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis. Forma 11, 1–25.

    MATH  MathSciNet  Google Scholar 

  • Lewis, M., Schmitz, G., Kareiva, P., Trevors, J., 1996. Models to examine containment and spread of gentically engineered microbes. Mol. Ecol. 5, 165–175.

    Article  Google Scholar 

  • Logan, J., 2001. Transport Modeling in Hydrogeochemical Systems. Interdisciplinary Applied Mathematics. Springer, New York.

    Google Scholar 

  • Lutscher, F., Pachepsky, E., Lewis, M., 2005. The effect of dispersal patterns on stream populations. SIAM Appl. Math. 65(4), 1305–1327.

    Article  MATH  MathSciNet  Google Scholar 

  • Lutscher, F., McCauley, E., Lewis, M. Spatial patterns and coexistence mechanisms in rivers. Theor. Pop. Biol., submitted for publication.

  • Magnus, W., Winkler, S., 1979. Hill’s Equation. Dover, New York.

    Google Scholar 

  • Medlock, J., Kot, M., 2003. Spreading diseases: Integro-differential equations new and old. Math. Biosci. 184, 201–222.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Mulholland, P., DeAngelis, D., 2000. Surface–subsurface exchange and nutrient spiraling. In: Jones, J., Jr., Mulholland, P. (Eds.), Streams and Ground Waters. Academic Press, New York, pp. 149–166.

    Google Scholar 

  • Müller, K., 1954. Investigations on the organic drift in north Swedish streams. Technical Report 34, Institute of Freshwater Research, Drottningholm.

    Google Scholar 

  • Müller, K., 1982. The colonization cycle of freshwater insects. Oecologica 53, 202–207.

    Article  Google Scholar 

  • Murray, J., Sperb, R., 1983. Minimum domains for spatial patterns in a class of reation diffusion equations. J. Math. Biol. 18, 169–184.

    PubMed  MATH  MathSciNet  Google Scholar 

  • Othmer, H., 1983. A continuum model for coupled cells. J. Math. Biol. 17, 351–369.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Pachepsky, E., Lutscher, F., Nisbet, R., Lewis, M.A., 2005. Persistence, spread and the drift paradox. Theor. Popul. Biol. 67, 61–73.

    Article  PubMed  MATH  Google Scholar 

  • Potapov, A., Lewis, M., 2004. Climate and competition: The effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66(5), 975–1008.

    Article  PubMed  MathSciNet  Google Scholar 

  • Robbins, T.C., Lewis, M.A. Modeling population spread in heterogeneous environments using integrodifference equations. SIAM J. Appl. Math., submitted for publication.

  • Sherratt, J., 2005. An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51, 183–197.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Shigesada, N., Kawasaki, K., Teramoto, E., 1986. Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Skellam, J.G., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218.

    PubMed  MATH  MathSciNet  Google Scholar 

  • Speirs, D., Gurney, W., 2001. Population persistence in rivers and estuaries. Ecology 82(5), 1219–1237.

    Article  Google Scholar 

  • Turchin, P., 1998. Quantitative Analysis of Movement. Sinauer Assoc., Sunderland, MS.

    Google Scholar 

  • Van Kirk, R.W., Lewis, M.A., 1997. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59(1), 107–137.

    Article  MATH  Google Scholar 

  • Van Kirk, R.W., Lewis, M.A., 1999. Edge permeability and population persistence in isolated habitat patches. Nat. Resource Model. 12, 37–64.

    Article  MATH  Google Scholar 

  • Weinberger, H.F., 1982. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger, H.F., 2002. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Xin, J., 2000. Front propagaion in heterogeneous media. SIAM Rev. 42(2), 161–230.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof Lutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutscher, F., Lewis, M.A. & McCauley, E. Effects of Heterogeneity on Spread and Persistence in Rivers. Bull. Math. Biol. 68, 2129–2160 (2006). https://doi.org/10.1007/s11538-006-9100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9100-1

Keywords

Navigation