Skip to main content
Log in

Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Soil salinization is a global issue that negatively impacts crop yield and has become a prime concern for researchers worldwide. Many important crop plants are susceptible to salinity-induced stresses, including ionic and osmotic stress. Approximately, 20% of the world's cultivated and 33% of irrigated land is affected by salt. While various agricultural practices have been successful in alleviating salinity stress, they can be costly and not environment-friendly. Therefore, there is a need for cost-effective and eco-friendly practices to improve soil health. One promising approach involves utilizing microbes found in the vicinity of plant roots to mitigate the effects of salinity stress and enhance plant growth as well as crop yield. By exploiting the salinity tolerance of plants and their associated rhizospheric microorganisms, which have plant growth-promoting properties, it is possible to reduce the adverse effects of salt stress on crop plants. The soil salinization is a common problem in the world, due to which we are unable to use the saline land. To make proper use of this land for different crops, microorganisms can play an important role. Looking at the increasing population of the world, this will be an appreciated effort to make the best use of the wasted land for food security. The updated information on this issue is needed. In this context, this article provides a concise review of the latest research on the use of salt-tolerant rhizospheric microorganisms to mitigate salinity stress in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

AMF:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

AsA:

Antioxidants ascorbate

CAT:

Catalase

Cl :

Chloride ion

EC:

Electrical conductivity

EPS:

Exopolysaccharides

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

H2O2 :

Hydrogen peroxide

HCN:

Hydrogen cyanide

IAA:

Indole acetic acid

JA:

Jasmonic acid

MDA:

Malondialdehyde

Mha:

Million hectares

mM:

Millimolar

Na+ :

Sodium ion

NaCl:

Sodium chloride

NOR:

Nitric oxide reductase

P:

Phosphorus

PGPB:

Plant growth-promoting bacteria

PGPMs:

Plant growth-promoting microbes

POD:

Peroxidase dismutase

POX:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Zn:

Zinc

References

  1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  2. Patel BB, Patel Bharat B, Dave RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. J Appl Technol Environ Sanitation 1(1):87–92

    Google Scholar 

  3. Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L, Lachaal M (2014) Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83:126–133

    Article  CAS  PubMed  Google Scholar 

  4. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  5. Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  6. Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Google Scholar 

  7. Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: Same players, different timing? J Exp Bot 65:2963–2979

    Article  CAS  PubMed  Google Scholar 

  8. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Sun R, Tian Y, Guo K, Sun H, Liu X, Chu H, Liu B (2020) Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. ASM J 5(2):e00741-e819. https://doi.org/10.1128/mSystems.00741-19

    Article  Google Scholar 

  10. Gujjar RS, Banyen P, Chuekong W, Worakan P, Roytrakul S, Supaibulwatana K (2020) A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants 9:1106. https://doi.org/10.3390/plants9091106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  12. Lugtenberg B, Chin-A-Woeng T, Bloemberg G (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  13. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  14. Dimkpa C, Weinand T, Ash F (2009) Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  15. Hayat R, Ali S, Amara KR, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  16. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  17. Rasool S, Hameed A, Azooz MM, Rehman MU, Siddiqi TO, Ahmed P (2013) Salt stress: causes, types and responses of plants. https://www.researchgate.net/publication/278705748. https://doi.org/10.1007/978-1-4614-4747-4_1

  18. Singh KN, Chatrath R (2001) Salinity tolerance. In: Reynolds MP, Monasterio JIO, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 101–110

    Google Scholar 

  19. Kotuby-Amacher J, Koenig K, Kitchen B (2000) Salinity and plant tolerance. https://extension.usu.edu/files/publications/publication/AG-SO-03.pdf.

  20. Munns R, Goyal S, Passioura J (2004) Salinity stress and its mitigation. Plant Stress Website. Blum A. (ed). http://www.plantstress.com/Articles/index.asp.

  21. Lauchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31(11):1565–1574

    Article  CAS  PubMed  Google Scholar 

  22. Rana G, Katerji N (2000) Measurement and estimation of actual transpiration in the field under Mediterranean climate: a review. Eur J of Agron 13(2–3):125–153

    Article  Google Scholar 

  23. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  24. Zhu F, Qu L, Hong X, Sun X (2007) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp YCWA18 from Daqiao Saltern on the coast of the Yellow Sea of China. Evid Based Complement Alternat Med. 2011:615032. https://doi.org/10.1155/2011/615032Zhu

    Article  Google Scholar 

  25. JK (2007) Plant salt stress: encyclopedia of life sciences. Wiley, New York

    Google Scholar 

  26. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  27. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  28. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  29. Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  30. Sharma A, Singh RK, Singh P, Vaishnav A, Guo DJ, Verma KK et al (2021) Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms 9:2203. https://doi.org/10.3390/microorganisms9112203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maggio A, Hasegawa PM, Bressan RA, Consiglio MF, Joly RJ (2001) Review: Unravelling the functional relationship between root anatomy and stress tolerance. Funct Plant Biol 28(10):999–1004

    Article  Google Scholar 

  32. Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13(1):143–160

    Article  Google Scholar 

  33. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Google Scholar 

  34. Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Funct Plant Biol 22(4):561–569

    Article  CAS  Google Scholar 

  35. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  36. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  37. Kashyap AS, Manzar N, Rajawat MVS, Kesharwani AK, Singh RP, Dubey SC, Pattanayak D, Dhar S, Lal SK, Singh D (2021) Screening and biocontrol potential of rhizobacteria native to Gangetic plains and hilly regions to induce systemic resistance and promote plant growth in chilli against bacterial wilt disease. Plants 10:2125. https://doi.org/10.3390/plants10102125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmad E, Sharma SK, Kashyap AS et al (2023) Evaluation of osmotolerant potential of Halomonas sulfidaeris MV-19 Isolated from a mud volcano. Curr Microbiol 80(4):102. https://doi.org/10.1007/s00284-023-03202-6

    Article  CAS  PubMed  Google Scholar 

  39. Anjali KS, Korra T, Thakur R, Arutselvan R, Kashyap AS, Nehela Y, Chaplygin V, Minkina T, Keswani C (2023) Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8:100154. https://doi.org/10.1016/j.stress.2023.100154

    Article  Google Scholar 

  40. Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D (2022) Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chilli against bacterial wilt disease. Antioxidants 11:404. https://doi.org/10.3390/antiox11020404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narware J, Singh SP, Manzar N, Kashyap AS (2023) Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solani. Front Microbiol 14:1159251. https://doi.org/10.3389/fmicb.2023.1159251

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kashyap AS, Manzar N, Meshram S, Sharma PK (2023) Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crop: a step towards sustainable agriculture. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1174532

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H (2023) Chromium toxicity in plants: signaling, mitigation, and future perspectives. Plants 12:1502. https://doi.org/10.3390/plants12071502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14(7–9):843–853

    Article  PubMed  Google Scholar 

  45. Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M et al (2022) Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. Int J Mol Sci 23:3741. https://doi.org/10.3390/ijms23073741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  47. Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  CAS  PubMed  Google Scholar 

  48. Lata R, Choudhary S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  49. Egamberdieva D, Wirth S, Kimura SDB, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02791

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kumar R, Sagar V, Verma VC, Kumar M et al (2023) Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. Front Plant Sci 14:1225234

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tisarum R, Theerawitaya C, Samphumphuang T, Polispitak K, Thongpoem P, Singh HP, Cha-um S (2020) Alleviation of salt stress in upland rice (Oryza sativa L sp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front Plant Sci 11:348

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manchanda G, Garg N (2011) Salinity and its effects on the functional biology of legumes. Acta Plant 30:595–618

    Article  Google Scholar 

  53. Younesi O, Moradi A, Namdari A (2013) Influence of arbuscular mycorrhizal fungi on osmotic adjustment compounds and antoxidants enzymes activity in nodules of salt-stressed soybean (Glycine max). Acta Agric Slov 101:219–230

    Article  Google Scholar 

  54. Tallat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    Article  Google Scholar 

  55. Liang Y, Zhang M, Wang M, Zhang W, Qiao C, Luo Q, Lu X (2020) Freshwater cyanobacterium Synechococcus elongatus PCC7942 adapts to an environment with salt stress via an ion-induced enzymatic balance of compatible solutes. Appl Environ Microbiol 18:86

    Google Scholar 

  56. Lin P, Zhang F, Pakrasi HB (2020) Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep 10:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plant 20:201–207

    Article  CAS  Google Scholar 

  58. Jogawat A, Vadassery J, Verma N, Oelmuller R, Dua M, Nevo E, Johri AK (2016) PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 6:36765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalskic KP (2019) Endophytic microbes and their potential applications in crop management. Pest Manag Sci. https://doi.org/10.1002/ps.5527

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bokhari A, Essack M (2020) Lafi FF (2020) Author Correction: Bio-prospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 10:3001. https://doi.org/10.1038/s41598-020-58957-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, Singh HV (2022) Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability 14:12786. https://doi.org/10.3390/su141912786

    Article  CAS  Google Scholar 

  62. Ripa FA, Cao W, Tong S, Sun J (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Biomed Res Int. https://doi.org/10.1155/2019/6105865

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang S, Gan Y, Xu B (2019) Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol 19:1. https://doi.org/10.1186/s12870-018-1618-5

    Article  Google Scholar 

  64. Kashyap PL, Solanki MK, Kushwaha P, Kumar S, Srivastava AK (2020) Bio-control potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. J Soil Sci Plant Nutr 20:160–176

    Article  CAS  Google Scholar 

  65. Arora S, Singh YP, Sahni VM (2017) Bio-remediation of saline and sodic soils through halophilic bacteria to enhance agricultural production. J Soil Water Conservation. https://doi.org/10.5958/2455-7145.2016.00027.8

    Article  Google Scholar 

  66. Goswami SK, Kashyap PL, Awasthi S (2019) Deciphering rhizosphere microbiome for salt-tolerant bacteria and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathol. https://doi.org/10.1007/s42360-019-00174-1

    Article  Google Scholar 

  67. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  68. Kumar K, Manigundan K, Amaresan N (2017) Influence of salt tolerant Trichoderma spp. on the growth of maize (Zea mays) under different salinity conditions. J Basic Microbiol 57(2):141–150. https://doi.org/10.1002/jobm.201600369

    Article  CAS  PubMed  Google Scholar 

  69. Saghafi D, Delangiz N, Lajayer BA, Ghorbanpour M (2019) An overview on the improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech 9(7):261

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmad A, Akram W (2018) Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res Int 25(5):4491–4505

    Article  CAS  PubMed  Google Scholar 

  71. Bano DA, Singh RK, Waza SA, Singh NP (2015) Effect of cowpea Bradyrhizobium (RA-5) and Burkholderia cepacia (RRE-5) on growth parameters of pigeon pea under salt stress conditions. J Pure Appl Microbio 9:2539–2546

    CAS  Google Scholar 

  72. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth-promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  73. Yuan Z, Druzhinia IS, Labbe J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA (2016) Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467. https://doi.org/10.1038/srep32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Metwali EM, Abdelmoneim TS, Bakheit MA, Kadasa N (2015) Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics 8:449

    CAS  Google Scholar 

  75. Szymanska R, Pospisil P, Kruk J (2016) Plant-derived antioxidants in disease prevention [published correction appears in Oxid Med Cell Longev. 2017; 2017:5092754]. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1920208

  76. Jida M, Assefa F (2011) Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil-growing areas of Ethiopia. Afr J Microbiol Res 5:4133–4142

    Google Scholar 

  77. Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for co-inoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fert Soils 47:457–465

    Article  CAS  Google Scholar 

  78. Halder A, Banerjee J, Bhattacharyya P, Pramanik K, Debnath A (2016) Isolation of lentil-specific salt tolerant nitrogen-fixing bacteria from Murshidabad district of West Bengal. J Crop Weed 12:14–19

    Google Scholar 

  79. Sorty AM, Meena K, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882. https://doi.org/10.1007/s12010-016-2139-z

    Article  CAS  PubMed  Google Scholar 

  80. Bharti N, Pandey S, Barnawal D (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress-responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mukhtar S, Ahmad S, Bashir A, Mehnaz S, Mirza MS, Malik K (2019) Identification of plasmid-encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307. https://doi.org/10.1016/j.micres.2019.126307

    Article  CAS  PubMed  Google Scholar 

  82. Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE 15(2):e0228199

    Google Scholar 

  83. Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ (2019) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in Soybean seedlings. Biomed Res Int. https://doi.org/10.1155/2019/9530963

    Article  PubMed  PubMed Central  Google Scholar 

  84. Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  85. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  PubMed  Google Scholar 

  86. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Article  CAS  PubMed  Google Scholar 

  87. Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  88. Saghafi D, Ghorbanpour M, Lajayer BA (2018) Efficiency of rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18:253–268

    CAS  Google Scholar 

  89. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR (2009) Isolation and characterization of ACC deaminase-producing fluorescent Pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  90. Cheng Z, Woody OZ, Mcconkey BJ, Glick BR (2012) Combined effects of the plant growth promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263

    Article  Google Scholar 

  91. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  92. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biotechnol 63:170–176

    Article  CAS  Google Scholar 

  93. Aamir M, Aslam A, Khan MY, Usman M (2013) Co-inoculation with rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agri Biol 1:7

    Google Scholar 

  94. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1- carboxylate deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  95. Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of the Yellow Sea of China. Evid Based Complement Alternat Med. https://doi.org/10.1155/2011/615032

    Article  PubMed  PubMed Central  Google Scholar 

  96. Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 22:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Irizarry I, White J (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol 122:1110–1120. https://doi.org/10.1111/jam.13414

    Article  CAS  PubMed  Google Scholar 

  98. Wu Z, Yao L, Kaleem I, Li C (2018) Application efficacy of biological seed coating agent from combination of PGPR on cotton in the field of information technology and agricultural engineering. In: Zhu E, Sambath S (eds) Advances in intelligent and soft computing, vol 134. Springer, Berlin

    Google Scholar 

  99. Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105. https://doi.org/10.1007/s11104-012-1402-5

    Article  CAS  Google Scholar 

  100. Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387

    Article  CAS  Google Scholar 

  101. Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chil J Agr Res 73:213–219

    Article  Google Scholar 

  102. Sultana S, Paul SC, Karim MM (2018) Salinity intrusion and coastal agriculture: adaptation strategies using salt tolerant plant growth promoting rhizobacteria for sustainable food security. Reg Probl 21:58–61

    Google Scholar 

  103. Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Microbiol Res 169:20–32

    Article  CAS  Google Scholar 

  104. Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68:525–535

    Article  CAS  Google Scholar 

  105. Sen S, Chandrasekhar CN (2015) Effect of PGPR on enzymatic activities of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 5:44–48

    CAS  Google Scholar 

  106. Misra S, Dixit VK, Khan MH, Kumar M, Dviwedi S, Yadav GS (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt-tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  107. Habib SH, Kausar H, Saud HM, Ismail MR, Othman R (2016) Molecular characterization of stress-tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. Int J Agric Biol 18:184–191

    Article  CAS  Google Scholar 

  108. Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129

    Article  CAS  Google Scholar 

  109. Kearl J, McNary C, Lowman JS, Mei C, Aanderud ZT, Smith ST, West J, Colton E, Hamson M, Nielsen BL (2019) Salt-tolerant halophyte rhizosphere bacteria stimulate the growth of Alfalfa in salty soil. Front Microbiol 10:1849. https://doi.org/10.3389/fmicb.2019.01849

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK (2020) Sphingobacterium sp BHU-AV3 induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. Front Microbiol 11:443. https://doi.org/10.3389/fmicb.2020.00443

    Article  PubMed  PubMed Central  Google Scholar 

  111. He ZQ, He CX, Zhang ZB, Zou JR, Wang HS (2007) Changes in anti-oxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under salt stress. Colloids Surfaces B 59:128–133

    Article  CAS  Google Scholar 

  112. Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797. https://doi.org/10.4014/jmb.1609.09042

    Article  CAS  PubMed  Google Scholar 

  113. Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage 95:S37–S41

    Article  CAS  PubMed  Google Scholar 

  114. Tewari S, Arora NK (2014) Talc-based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions. Cell Mol Biol 60:73–81

    CAS  PubMed  Google Scholar 

  115. Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and bio-control agent for sunflower crop under saline conditions. Symbiosis 68:99–108

    Article  CAS  Google Scholar 

  116. Ghorai S, Pal KK, Dey R (2015) Alleviation of salinity stress in groundnut by application of PGPR. Int J Res Eng Technol 2:742–750

    Google Scholar 

  117. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of (Arachis hypogaea L.) by the interaction of halotolerant plant growth promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  118. Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    Article  PubMed  PubMed Central  Google Scholar 

  119. Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth promoting rhizobacteria. J Plant Growth Regul 31:53–62

    Article  CAS  Google Scholar 

  120. Egamberdieva D, Shurigin V, Gopalakrishnan S, Sharma R (2014) Growth and symbiotic performance of chickpea (Cicer arietinum) cultivars under saline soil conditions. J Biol Chem Res 56:1–10

    Google Scholar 

  121. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropane-1-carboxylic acid deaminase-containing Mesorhizobium strains. Afr J Microbiol Res 9:117–124

    Article  CAS  Google Scholar 

  123. Das P, Behra BK, Chatterjee S, Das BK, Mohapatra T (2020) De novo transcriptome analysis of halotolerant bacterium Staphylococcus sp. strain P-TSB-70 isolated from East coast of India: in search of salt stress tolerant genes. Int J Environ Res Public Health 17(1):253

    Google Scholar 

  124. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidants and plant tolerance to salinity. Plant Sci 201–202:42–51

    Article  PubMed  Google Scholar 

  125. Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  126. Mohammed AF (2018) Effectiveness of exopolysaccharides and biofilm-forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afri J Microbiol Res 12:399–404

    Article  CAS  Google Scholar 

  127. Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  128. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  129. Rojas-Tapias M-G, Pardo-Díaz AS, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  130. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  131. Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  PubMed  Google Scholar 

  132. Akram MS, Shahid M, Tariq M, Azeem M, Javed MT, Saleem S (2016) Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt-stressed maize (Zea mays L.). Front Microbiol 7:867

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gond SK, Torres MS, Bergen MS, Helsel Z, White JF Jr (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  134. Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physl 64:235–241

    Article  CAS  Google Scholar 

  135. Zafar-ul-Hye MM, Zahir H, Ahmad F, Hussain ZM, Hussain A (2014) Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 16:591–596

    Google Scholar 

  136. Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339

    Article  CAS  PubMed  Google Scholar 

  137. Aslam F, Ali B (2018) Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) forssk. Improved growth of maize under salinity stress. Agronomy 8:131. https://doi.org/10.3390/agronomy8080131

    Article  CAS  Google Scholar 

  138. Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, Saxena AK (2020) Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline-sodic soil. J Basic Microbiol 57(2):141–150. https://doi.org/10.1002/jobm.201600369

    Article  CAS  Google Scholar 

  139. Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:091. https://doi.org/10.1093/femsle/fnx091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the work of all the cited authors in the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed in the manuscript. SKG, ASK, RSG, and NM drafted the manuscript. RK, RSG, AS, and SKG edited and prepared the final version of manuscript. The final version of manuscript has been approved by all the authors.

Corresponding author

Correspondence to Ranjit Singh Gujjar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

No human participants or animals are involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, S.K., Kashyap, A.S., Kumar, R. et al. Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Curr Microbiol 81, 14 (2024). https://doi.org/10.1007/s00284-023-03538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03538-z

Navigation