Skip to main content
Log in

Screening of White-Rot Fungi Isolates for Decolorization of Pulp and Paper Mill Effluent and Assessment of Biodegradation and Biosorption Processes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ten white-rot fungal isolates were evaluated for the decolorization potential of pulp and paper mill effluent. Trametes elegans PP17-06, Pseudolagarobasidium sp. PP17-33, and Microporus sp.2 PP17-20 showed the highest decolorization efficiencies between 42 and 54% in 5 d. To reveal the mechanisms involved in decolorization and assess the long-term performance, PP17-06, which showed the highest decolorization efficiency, was further investigated. It could reduce the ADMI color scale by 63.6% in 10 d. However, extending the treatment period for more than 10 d did not significantly enhance the decolorization efficiencies. The maximum MnP activity of 3.27 U L−1 was observed on the 6 d during the biodegradation. In comparison, laccase activities were low with the maximum activity of 0.38 U L−1 (24 d). No significant LiP activities were monitored during the experiment. Dead fungal biomass showed an optimum decolorization efficiency of 44.18% in 8 d employing the biosorption mechanism. No significant changes in the decolorization efficiency were observed after that, suggesting the equilibrium status was reached. These results revealed that PP17-06 has the potential to decolorize pulp and paper mill effluent by employing both biodegradation and biosorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haq I, Mazumder P, Kalamdhad AS (2020) Recent advances in removal of lignin from paper industry wastewater and its industrial applications – a review. Bioresour Technol 312:123636. https://doi.org/10.1016/j.biortech.2020.123636

    Article  CAS  PubMed  Google Scholar 

  2. Haq I, Raj A (2020) Pulp and paper mill wastewater: ecotoxicological effects and bioremediation approaches for environmental safety. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 333–356

    Chapter  Google Scholar 

  3. Mehmood K, Rehman SKU, Wang J, Farooq F, Mahmood Q, Jadoon AM, Javed MF, Ahmad I (2019) Treatment of pulp and paper industrial effluent using physicochemical process for recycling. Water 11(11):2393. https://doi.org/10.3390/w11112393

    Article  CAS  Google Scholar 

  4. Gaur N, Narasimhulu K, Pydi Setty Y (2018) Extraction of ligninolytic enzymes from novel Klebsiella pneumoniae strains and its application in wastewater treatment. Appl Water Sci 8(4):111. https://doi.org/10.1007/s13201-018-0758-y

    Article  CAS  Google Scholar 

  5. Hooda R, Bhardwaj NK, Singh P (2018) Brevibacillus parabrevis MTCC 12105: A potential bacterium for pulp and paper effluent degradation. World J Microbiol Biotechnol 34(2):31. https://doi.org/10.1007/s11274-018-2414-y

    Article  CAS  PubMed  Google Scholar 

  6. Sachan P, Madan S, Hussain A (2019) Isolation and screening of phenol-degrading bacteria from pulp and paper mill effluent. Appl Water Sci 9(4):100. https://doi.org/10.1007/s13201-019-0994-9

    Article  CAS  Google Scholar 

  7. Sen Sudip K, Raut S, Gaur M, Raut S (2020) Biodegradation of lignin from pulp and paper mill effluent: optimization and toxicity evaluation. J Hazard Toxic Radioact Waste 24(4):04020032. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000522

    Article  Google Scholar 

  8. Singh AK, Yadav P, Bharagava RN, Saratale GD, Raj A (2019) Biotransformation and cytotoxicity evaluation of kraft lignin degraded by ligninolytic Serratia liquefaciens. Front Microbiol 10:2364. https://doi.org/10.3389/fmicb.2019.02364

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zabel RA, Morrell JJ (2020) Chapter Eight - Chemical changes in wood caused by decay fungi. In: Zabel RA, Morrell JJ (eds) Wood microbiology, 2nd edn. Academic Press, Cambridge, pp 215–244

    Chapter  Google Scholar 

  10. Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN (2019) Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech 9:1–11. https://doi.org/10.1007/s13205-019-1631-x

    Article  Google Scholar 

  11. Bettin F, Cousseau F, Martins K, Boff NA, Zaccaria S, Moura da Silveira M, Pinheiro Dillon AJ (2019) Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J Environ Manage 236:581–590. https://doi.org/10.1016/j.jenvman.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  12. Teerapatsakul C, Chitradon L (2016) Physiological regulation of an alkaline-resistant laccase produced by Perenniporia tephropora and efficiency in biotreatment of pulp mill effluent. Mycobiology 44(4):260–268. https://doi.org/10.5941/MYCO.2016.44.4.260

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sigoillot J-C, Berrin J-G, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. Adv Bot Res 61:263–308. https://doi.org/10.1016/B978-0-12-416023-1.00008-2

    Article  CAS  Google Scholar 

  14. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang W, Zhang X, Zhang P, Carol Morera X, van Lier JB, Spanjers H (2020) Evaluation of white rot fungi pretreatment of mushroom residues for volatile fatty acid production by anaerobic fermentation: Feedstock applicability and fungal function. Bioresour Technol 297:122447. https://doi.org/10.1016/j.biortech.2019.122447

    Article  CAS  PubMed  Google Scholar 

  16. Grelska A, Noszczyńska M (2020) White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. Environ Sci Pollut Res Int 27(32):39958–39976. https://doi.org/10.1007/s11356-020-10382-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang A, Wang G, Gong G, Shen J (2017) Immobilization of white rot fungi to carbohydrate-rich corn cob as a basis for tertiary treatment of secondarily treated pulp and paper mill wastewater. Ind Crops Prod 109:538–541. https://doi.org/10.1016/j.indcrop.2017.09.006

    Article  CAS  Google Scholar 

  18. Prasongsuk S, Lotrakul P, Imai T, Punnapayak H (2009) Decolourization of pulp mill wastewater using thermotolerant white rot fungi. Sci Asia 35:37–41. https://doi.org/10.2306/scienceasia1513-1874.2009.35.037

    Article  CAS  Google Scholar 

  19. Wu J, Xiao Y-Z, Yu H-Q (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96(12):1357–1363. https://doi.org/10.1016/j.biortech.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  20. Costa S, Dedola DG, Pellizzari S, Blo R, Rugiero I, Pedrini P, Tamburini E (2017) Lignin biodegradation in pulp-and-paper mill wastewater by selected white rot fungi. Water 9(12):935. https://doi.org/10.3390/w9120935

    Article  CAS  Google Scholar 

  21. Barapatre A, Jha H (2016) Decolourization and biological treatment of pulp and paper mill effluent by lignin-degrading fungus Aspergillus flavus strain F10. J Curr Microbiol Appl Sci 5:19–32. https://doi.org/10.20546/ijcmas.2016.505.003

    Article  CAS  Google Scholar 

  22. Rybczyńska-Tkaczyk K, Korniłłowicz-Kowalska T (2016) Biosorption optimization and equilibrium isotherm of industrial dye compounds in novel strains of microscopic fungi. Int J Environ Sci Technol 13(12):2837–2846. https://doi.org/10.1007/s13762-016-1111-3

    Article  CAS  Google Scholar 

  23. Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97(3):512–521. https://doi.org/10.1016/j.biortech.2005.02.045

    Article  CAS  PubMed  Google Scholar 

  24. Vaithanomsat P, Apiwatanapiwat W, Petchoy O, Chedchant J (2010) Decolorization of reactive dye by white-rot Fungus Datronia sp. KAPI0039. Kasetsart J (Nat Sci) 44:879–890

    CAS  Google Scholar 

  25. Thamvithayakorn P, Phosri C, Pisutpaisal N, Krajangsang S, Whalley AJS, Suwannasai N (2019) Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus, Pseudolagarobasidium sp. PP17-33. 3 Biotech 9(11):417. https://doi.org/10.1007/s13205-019-1945-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Argumedo-Delira R, Gómez-Martínez MJ, Uribe-Kaffure R (2021) Trichoderma biomass as an alternative for removal of congo red and malachite green industrial dyes. Appl Sci 11(1):448. https://doi.org/10.3390/app11010448

    Article  CAS  Google Scholar 

  27. APHA (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington DC

    Google Scholar 

  28. Machado K, Matheus D (2006) Biodegradation of Remazol brilliant blue R by ligninolytic enzymatic complex produced by Pleurotus ostreatus. Braz J Microbiol 37(4):468–473. https://doi.org/10.1590/S1517-83822006000400013

    Article  CAS  Google Scholar 

  29. Silva M, Souza V, Santos V, Kamida H, Vasconcellos-Neto J, Góes-Neto A, Koblitz M (2014) Production of manganese peroxidase by Trametes villosa on unexpensive substrate and its application in the removal of lignin from agricultural wastes. Adv Biosci Biotechnol 5:1067–1077. https://doi.org/10.4236/abb.2014.514122

    Article  Google Scholar 

  30. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249. https://doi.org/10.1016/0076-6879(88)61025-1

    Article  CAS  Google Scholar 

  31. Raghukumar C, Chandramohan D, Michel FC, Redd CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18(1):105–106. https://doi.org/10.1007/BF00137820

    Article  CAS  Google Scholar 

  32. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  33. Sagar S, Sharma I, Thakur M, Tripathi A (2020) Decolourization and degradation of Sunset Yellow-FCF and Acid Orange-7 by wild white rot fungi Trametes elegans and Trametes versicolor and their extracellular ligninolytic enzymes. Int J Sci Technol Res 9(1):2255–2271

    Google Scholar 

  34. Dhillon GS, Kaur S, Brar SK (2012) In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int Biodeterior Biodegrad 72:67–75. https://doi.org/10.1016/j.ibiod.2012.05.012

    Article  CAS  Google Scholar 

  35. Levin L, Melignani E, Ramo AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101(12):4554–4563. https://doi.org/10.1016/j.biortech.2010.01.102

    Article  CAS  PubMed  Google Scholar 

  36. Hefnawy MA, Gharieb M, Shaaban MT, Soliman AM (2017) Optimization of culture condition for enhanced decolorization of direct blue dye by Aspergillus flavus and Penicillium canescens. J App Pharm Sci 7:083–092. https://doi.org/10.7324/JAPS.2017.70210

    Article  CAS  Google Scholar 

  37. Souza ÉS, Souza JVB, Silva FT, Paiva TCB (2014) Treatment of an ECF bleaching effluent with white-rot fungi in an air-lift bioreactor. Environ Earth Sci 72(4):1289–1294. https://doi.org/10.1007/s12665-014-3048-5

    Article  CAS  Google Scholar 

  38. Souza JV, Silva ES, Silva FT, Paiva TC (2005) Fungal treatment of a delignification effluent from a nitrocellulose industry. Bioresour Technol 96(17):1936–1942. https://doi.org/10.1016/j.biortech.2005.01.027

    Article  CAS  PubMed  Google Scholar 

  39. Kreetachat T, Chaisan O, Vaithanomsat P (2016) Decolorization of pulp and paper mill effluents using wood rotting fungus Fibrodontia sp. RCK783S. Int J Environ Sci Dev 7:321–324. https://doi.org/10.7763/IJESD.2016.V7.792

    Article  CAS  Google Scholar 

  40. Neoh CH, Yahya A, Adnan R, Majid ZA, Ibrahim Z (2013) Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Environ Sci Pollut Res 20(5):2912–2923. https://doi.org/10.1007/s11356-012-1193-5

    Article  CAS  Google Scholar 

  41. Neoh CH, Lam CY, Lim CK, Yahya A, Ibrahim Z (2013) Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata. Environ Sci Pollut Res 21(6):4397–4408. https://doi.org/10.1007/s11356-013-2350-1

    Article  CAS  Google Scholar 

  42. Wang N, Chu Y, Wu F, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244. https://doi.org/10.1016/j.ibiod.2016.12.015

    Article  CAS  Google Scholar 

  43. Fang W, Zhang P, Zhang X, Zhu X, van Lier JB, Spanjers H (2018) White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy 162:534–541. https://doi.org/10.1016/j.energy.2018.08.082

    Article  CAS  Google Scholar 

  44. Pazarlıoǧlu NK, Sariişik M, Telefoncu A (2005) Laccase: production by Trametes versicolor and application to denim washing. Process Biochem 40(5):1673–1678. https://doi.org/10.1016/j.procbio.2004.06.052

    Article  CAS  Google Scholar 

  45. Pedroza A, Mosqueda R, Alonso-Vante N, Rodriguez Vazquez R (2007) Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 67:793–801. https://doi.org/10.1016/j.chemosphere.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  46. Ramsay JA, Mok WHW, Luu YS, Savage M (2005) Decoloration of textile dyes by alginate-immobilized Trametes versicolor. Chemosphere 61(7):956–964. https://doi.org/10.1016/j.chemosphere.2005.03.070

    Article  CAS  PubMed  Google Scholar 

  47. Sahoo D, Gupta R (2005) Evaluation of ligninolytic microorganisms for efficient decolorization of a small pulp and paper mill effluent. Process Biochem 40:1573–1578. https://doi.org/10.1016/j.procbio.2004.05.013

    Article  CAS  Google Scholar 

  48. Levin L, Forchiassin F, Ramo AM (2002) Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94(3):377–383. https://doi.org/10.2307/3761771

    Article  CAS  PubMed  Google Scholar 

  49. Kabbout R, Taha S (2014) Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia 55:437–444. https://doi.org/10.1016/j.phpro.2014.07.063

    Article  CAS  Google Scholar 

  50. Apiwatanapiwat W, Siriacha P, Vaithanomsat P (2005) Screening of fungi for decolorization of wastewater from pulp and paper industry. Kasetsart J (Nat Sci) 40:215–221

    Google Scholar 

  51. Chen C-L, Chang H-M, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3(1):35–57

    Article  Google Scholar 

  52. Torres JM, Cardenas C, Moron L, Guzman A, Dela Cruz TE (2012) Dye decolorization activities of marine-derived fungi isolated from Manila bay and Calatagan bay, Philippines. Philipp J Sci 140:133–143

    Google Scholar 

  53. Yeddou-Mezenner N (2010) Kinetics and mechanism of dye biosorption onto an untreated antibiotic waste. Desalination 262(1):251–259. https://doi.org/10.1016/j.desal.2010.06.023

    Article  CAS  Google Scholar 

  54. Kang Y, Xu X, Pan H, Tian J, Tang W, Liu S (2018) Decolorization of mordant yellow 1 using Aspergillus sp. TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered 9(1):222–232. https://doi.org/10.1080/21655979.2018.1472465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yonten V, Ince M, Tanyol M, Yildirim N (2016) Adsorption of bisphenol A from aqueous solutions by Pleurotus eryngii immobilized on Amberlite XAD-4 using as a new adsorbent. Desalin Water Treat 57(47):22362–22369. https://doi.org/10.1080/19443994.2015.1130659

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge for the financial supports from King Mongkut’s University of Technology North Bangkok (KMUTNB-65-IP-03; KMUTNB-66-KNOW-18; KMUTNB-FF-65-67).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Apichaya Sawasdee or Nipon Pisutpaisal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridtibud, S., Suwannasai, N., Sawasdee, A. et al. Screening of White-Rot Fungi Isolates for Decolorization of Pulp and Paper Mill Effluent and Assessment of Biodegradation and Biosorption Processes. Curr Microbiol 80, 350 (2023). https://doi.org/10.1007/s00284-023-03464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03464-0

Navigation