Skip to main content
Log in

Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agustin M, Sengpracha W, Phutdhawong W (2008) Electrocoagulation of palm oil mill effluent. Int J Environ Res Public Health 5(3):177–180

    Article  CAS  Google Scholar 

  • Ali MIA, Khalil NM, El-Ghany MNA (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6(16):3783–3790

    CAS  Google Scholar 

  • Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. N Biotechnol 29(1):38–45

    Article  CAS  Google Scholar 

  • Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101(9):3067–3075. doi:10.1016/j.biortech.2009.12.067

    Article  CAS  Google Scholar 

  • Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enzyme Microb Technol 28(7–8):602–605

    Article  CAS  Google Scholar 

  • DOE (1999) Industrial processes and the environment (Handbook no.3): crude palm oil industry. Department of Environment Malaysia, Kuala Lumpur

  • Ebright JR, Chandrasekar PH, Marks S, Fairfax MR, Aneziokoro A, McGinnis MR (1999) Invasive sinusitis and cerebritis due to Curvularia clavata in an immunocompetent adult. Clin Infect Dis 28(3):687–689

    Article  CAS  Google Scholar 

  • Ergül F, Sargın S, Öngen G, Sukan F (2010) Dephenolization and decolorization of olive mill wastewater through sequential batch and co-culture applications. World J Microbiol Biotechnol:1–8. doi:10.1007/s11274-010-0433-4

  • Fan Y-M, Huang W-M, Li S-F, Wu G-F, Li W, Chen R-Y (2009) Cutaneous phaeohyphomycosis of foot caused by Curvularia clavata. Mycoses 52(6):544–546. doi:10.1111/j.1439-0507.2008.01646.x

    Article  Google Scholar 

  • Grainger S, Fu G, Hall E (2010) Biosorption of colour-imparting substances in biologically treated pulp mill effluent using Aspergillus niger fungal biomass. Water Air Soil Pollut:1–12. doi:10.1007/s11270-010-0582-y

  • Grimwood BE, Ashman F, Jarman CG, Dendy DAV (1975) Coconut palm products: their processing in developing countries. Food and Agriculture Organization of the United Nations, Rome

  • HACH (2005) Hach water analysis DR5000 spectrohotometer procedures manual. HACH Company, USA

    Google Scholar 

  • Iandolo D, Piscitelli A, Sannia G, Faraco V (2011) Enzyme production by solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato pomace. Appl Biochem Biotechnol 163(1):40–51. doi:10.1007/s12010-010-9014-0

    Article  CAS  Google Scholar 

  • Jin X-C, Liu G-Q, Xu Z-H, Tao W-Y (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74(1):239–243. doi:10.1007/s00253-006-0658-1

    Article  CAS  Google Scholar 

  • Jones TH, Md R, Pon N (1979) Cellulases released during the germination of Dictyostelium discoideum spores. J Bacteriol 137(2):752–757

    CAS  Google Scholar 

  • Jonstrup M, Kumar N, Guieysse B, Murto M, Mattiasson B (2012) Decolorization of textile dyes by Bjerkandera sp. BOL 13 using waste biomass as carbon source. J Chem Technol Biotechnol doi:10.1002/jctb.3852

  • Kanwal H, Reddy M (2011) Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World J Microbiol Biotechnol 27(3):687–691. doi:10.1007/s11274-010-0507-3

    Article  CAS  Google Scholar 

  • Karakaya A, Laleli Y, Takaç S (2012) Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis. Int Biodeter Biodegr 75(0):75–82. doi:10.1016/j.ibiod.2012.09.005

    Article  CAS  Google Scholar 

  • Karim MAA, Annuar MSM (2009) Novel application of coconut husk as growth support matrix and natural inducer of fungal laccase production in a bubble column reactor. Asia-Pac J of Mol Biol Biotechnol 17(2):47–52

    Google Scholar 

  • Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97(3):640–646. doi:10.1111/j.1365-2672.2004.02348.x

    Article  CAS  Google Scholar 

  • Korabecna M (2007) The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 S rRNA Gene): its biological meaning and application in medical mycology. In: Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Formatex, pp 783–787

  • Lee K-M, Yu J, Son M, Lee Y-W, Kim K-H (2011) Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS ONE 6(6):e21629. doi:10.1371/journal.pone.0021629

    Article  CAS  Google Scholar 

  • Miranda MP, Benito GG, Cristobal NS, Nieto CH (1996) Color elimination from molasses wastewater by Aspergillus niger. Bioresour Technol 57(3):229–235

    Article  Google Scholar 

  • MPOB (2012) Review of the Malaysian oil palm industry 2011. Economics and Industry Development Division, Malaysian Palm Oil Board

  • Neo Y-P, Ariffin A, Tan C-P, Tan Y-A (2010) Phenolic acid analysis and antioxidant activity assessment of oil palm (E. guineensis) fruit extracts. Food Chem 122(1):353–359

    Article  CAS  Google Scholar 

  • Neoh C, Yahya A, Adnan R, Abdul Majid Z, Ibrahim Z (2013) Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Environ Sci Pollut Res 20(5):2912–2923. doi:10.1007/s11356-012-1193-5

    Article  CAS  Google Scholar 

  • Ortega-Clemente A, Caffarel-Méndez S, Ponce-Noyola MT, Barrera-Córtes J, Poggi-Varaldo HM (2009) Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants. Bioresour Technol 100(6):1885–1894

    Article  CAS  Google Scholar 

  • Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37

    Article  CAS  Google Scholar 

  • Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99(1):51–58

    Article  CAS  Google Scholar 

  • Philippoussis A, Diamantopoulou P, Papadopoulou K, Lakhtar H, Roussos S, Parissopoulos G, Papanikolaou S (2011) Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J Microbiol Biotechnol 27(2):285–297. doi:10.1007/s11274-010-0458-8

    Article  CAS  Google Scholar 

  • Raja Ehsan Shah RSS, Kaka Singh PK (2004) Treatment of Palm Oil Mill Effluent (POME) using membrane technology. In: Regional symposium on membrane science and technology, Puteri Pan Pacific Hotel, Johor Bharu

  • Saavedra M, Benitez E, Cifuentes C, Nogales R (2006) Enzyme activities and chemical changes in wet olive cake after treatment with Pleurotus ostreatus or Eisenia fetida. Biodegradation 17(1):93–102. doi:10.1007/s10532-005-4216-9

    Article  CAS  Google Scholar 

  • Sanghi R, Dixit A, Verma P (2011) Evaluation of Coriolus versicolor for its tolerance towards toxic sulphonic azo dyes in sequential batch mode. Process Saf Environ Prot 89(1):15–21. doi:10.1016/j.psep.2010.08.007

    Article  CAS  Google Scholar 

  • Sulaiman N, Ling CK (2004) Membrane ultrafiltration of treated palm oil mill effluent (POME). Journal Teknologi 41:113–120

    Google Scholar 

  • Vujčić M, Jankov RM (1990) Microbiologic transformation of progesterone by Curvularia clavata Jain. Steroids 55(1):17–21. doi:10.1016/0039-128X(90)90068-M

    Article  Google Scholar 

  • Xin B, Xia Y, Zhang Y, Aslam H, Liu C, Chen S (2012) A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution. Bioresour Technol 105:100–105

    Article  CAS  Google Scholar 

  • Yadav S, Chandra R (2012) Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation:1–12. doi:10.1007/s10532-012-9537-x

  • Yang X, Wang J, Zhao X, Wang Q, Xue R (2011a) Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresour Technol 102(22):10535–10541

    Article  CAS  Google Scholar 

  • Yang Y, Zhou J, Lu H, Yuan Y, Zhao L (2011b) Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation 22(5):1017–1027. doi:10.1007/s10532-011-9460-6

    Article  CAS  Google Scholar 

  • Zahrim AY, Rachel FM, Menaka S, Su SY, Melvin F, Chan ES (2009) Decolorisation of anaerobic palm oil mill effluent via activated sludge-granular activated carbon. World Applied Sciences Journal 5 (Special Issue for Environment):126–129

Download references

Acknowledgements

The authors express their appreciation to the Ministry of Sciences and Innovation Malaysia (National Science Fellowship) and Universiti Teknologi Malaysia for providing financial support to conduct the studies reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaharah Ibrahim.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neoh, C.H., Lam, C.Y., Lim, C.K. et al. Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata . Environ Sci Pollut Res 21, 4397–4408 (2014). https://doi.org/10.1007/s11356-013-2350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2350-1

Keywords

Navigation