Skip to main content

Advertisement

Log in

Rhizobium as Biotechnological Tools for Green Solutions: An Environment-Friendly Approach for Sustainable Crop Production in the Modern Era of Climate Change

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Modern and industrialized agriculture enhanced farm output during the last few decades, but it became possible at the cost of agricultural sustainability. Industrialized agriculture focussed only on the increase in crop productivity and the technologies involved were supply-driven, where enough synthetic chemicals were applied and natural resources were overexploited with the erosion of genetic diversity and biodiversity. Nitrogen is an essential nutrient required for plant growth and development. Even though nitrogen is available in large quantities in the atmosphere, it cannot be utilized by plants directly with the only exception of legumes which have the unique ability to fix atmospheric nitrogen and the process is known as biological nitrogen fixation (BNF). Rhizobium, a group of gram-negative soil bacteria, helps in the formation of root nodules in legumes and takes part in the BNF. The BNF has great significance in agriculture as it acts as a fertility restorer in soil. Continuous cereal–cereal cropping system, which is predominant in a major part of the world, often results in a decline in soil fertility, while legumes add nitrogen and improve the availability of other nutrients too. In the present context of the declining trend of the yield of some important crops and cropping systems, it is the need of the hour for enriching soil health to achieve agricultural sustainability, where Rhizobium can play a magnificent role. Though the role of Rhizobium in biological nitrogen fixation is well documented, their behaviour and performance in different agricultural environments need to be studied further for a better understanding. In the article, an attempt has been made to give an insight into the behaviour, performance and mode of action of different Rhizobium species and strains under versatile conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO (2017) The future of food and agriculture—trends and challenges. FAO, Rome, p 163

    Google Scholar 

  2. Pramanick B, Kumar M, Naik BM, Kumar M, Singh SK, Maitra S, Naik BSSS, Rajput VD, Minkina T (2022) Long-term conservation tillage and precision nutrient management in maize–wheat cropping system: effect on soil properties, crop production, and economics. Agronomy 12:2766. https://doi.org/10.3390/agronomy12112766

    Article  CAS  Google Scholar 

  3. Rahman KM, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10(3):759. https://doi.org/10.3390/su10030759

    Article  Google Scholar 

  4. Hossain A, Ali ME, Maitra S, Bhadra P, Rahman MME, Ali S, Aftab T (2022) The role of soil microorganisms in plant adaptation to abiotic stresses: current scenario and future perspectives, Chapter 13. In: Aftab T, Roychoudhury A (eds) Plant perspectives to global climate changes. Elsevier Inc., London, pp 233–278. https://doi.org/10.1016/B978-0-323-85665-2.00001-7

    Chapter  Google Scholar 

  5. Ali S, Liu K, Ahmed W, Jing H, Qaswar M, Kofi Anthonio C, Maitlo AA, Lu Z, Liu L, Zhang H (2021) Nitrogen mineralization, soil microbial biomass and extracellular enzyme activities regulated by long-term n fertilizer inputs: a comparison study from upland and paddy soils in a Red Soil Region of China. Agron 11:2057. https://doi.org/10.3390/agronomy11102057

    Article  CAS  Google Scholar 

  6. Jurys A, Feiziene D (2021) The effect of specific soil microorganisms on soil quality parameters and organic matter content for cereal production. Plants 10:2000. https://doi.org/10.3390/plants10102000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh R, Pramanick B, Singh AP, Neelam KS, Kumar A, Singh G (2017) Bio-efficacy of Fenoxaprop-P-Ethyl for grassy weed control in onion and its residual effect on succeeding maize crop. Indian J Weed Sci 49(1):63–66

    Google Scholar 

  8. Maitra S, Pramanick B, Dey P, Bhadra P, Shankar T, Anand K (2021) Thermotolerant soil microbes and their role in mitigation of heat stress in plants. In: Yadav AN (ed) Soil microbiomes for sustainable agriculture. Sustainable development and biodiversity, vol 27. Springer, Cham., pp 203–242. https://doi.org/10.1007/978-3-030-73507-4_8

    Chapter  Google Scholar 

  9. Ramya P, Maitra S, Shankar T, Adhikary R, Palai JB (2020) Growth and productivity of Finger millet (Eleusine coracana L. Gaertn) as influenced by integrated nutrient management. Agro Econ 7(2 Special issue):19–24

    Google Scholar 

  10. Khaitov B, Kurbonov A, Abdiev A, Adilov M (2016) Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eur J Soil Sci 5:105–112. https://doi.org/10.18393/ejss.2016.2.105-112

    Article  Google Scholar 

  11. Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53. https://doi.org/10.1111/nph.14876

    Article  PubMed  Google Scholar 

  12. Laik R, Kumara BH, Pramanick B, Singh SK, Nidhi AM, Gaber A, Hossain A (2021) Labile soil organic matter pools are influenced by 45 years of applied farmyard manure and mineral nitrogen in the wheat—pearl millet cropping system in the sub-tropical condition. Agronomy 11:2190. https://doi.org/10.3390/agronomy11112190

    Article  CAS  Google Scholar 

  13. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589. https://doi.org/10.1139/w11-044

    Article  CAS  PubMed  Google Scholar 

  14. Sindhu SS, Sharma R, Sindhu S, Sehrawat A (2019) Soil fertility improvement by symbiotic rhizobia for sustainable agriculture. In: Panpatte D, Jhala Y (eds) Soil fertility management for sustainable development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5904-0_7

    Chapter  Google Scholar 

  15. Chai R, Ye X, Ma C, Wang Q, Tu R, Zhang L, Gao H (2019) Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag 14:20. https://doi.org/10.1186/s13021-019-0133-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB et al (2021) Intercropping–a low input agricultural strategy for food and environmental security. Agronomy 11:343. https://doi.org/10.3390/agronomy11020343

    Article  CAS  Google Scholar 

  17. Wang Y, Ying H, Yin Y, Zheng H, Cui Z (2019) Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 657:96–102. https://doi.org/10.1016/j.scitotenv.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  18. Choudhury ATMA, Kennedy IR (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plant Anal 36:1625–1639. https://doi.org/10.1081/CSS-200059104

    Article  CAS  Google Scholar 

  19. Panday D, Mikha MM, Collins HP, Jin VL, Kaiser M, Cooper J, Malakar A, Maharjan B (2020) Optimum rates of surface-applied coal char decreased soil ammonia volatilization loss. J Environ Qual 49:256–267. https://doi.org/10.1002/jeq2.20023

    Article  CAS  PubMed  Google Scholar 

  20. Mabrouk Y, Hemissi I, Salem IB, Mejri S, Saidi M, Belhadj O (2018) Potential of rhizobia in improving nitrogen fixation and yields of legumes. In: Rigobelo E (ed) Symbiosis, IntechOpen. London. https://doi.org/10.5772/intechopen.73495

    Chapter  Google Scholar 

  21. Imen H, Neila A, Adnane B, Manel B, Mabrouk Y, Saidi M, Bouaziz S (2015) Inoculation with phosphate solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer aritenium L.) under phosphorus deficiency. J Plant Nutr 38:1656–1671. https://doi.org/10.1080/01904167.2015.1061543

    Article  CAS  Google Scholar 

  22. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321. https://doi.org/10.1007/BF00010460

    Article  CAS  Google Scholar 

  23. Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 64:92–104. https://doi.org/10.1016/j.micres.2006.10.007

    Article  CAS  Google Scholar 

  24. Beijerinck MW (1888) Die Bacterien der Papilionaceenknölchen. Botanische Zeitung 46:797–804

    Google Scholar 

  25. Frank B (1888) Über die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanis-chen Gesellschaft 7:332–346

    Google Scholar 

  26. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139. https://doi.org/10.1099/00207713-32-1-136

    Article  Google Scholar 

  27. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean Rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397. https://doi.org/10.1099/00207713-38-4-392

    Article  Google Scholar 

  28. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898. https://doi.org/10.1099/00207713-47-3-895

    Article  Google Scholar 

  29. Subba Rao NS (ed) (2012) Soil microbiology. Oxford & IBH Publishing Company Pvt. Ltd, New Delhi, pp 166–228

    Google Scholar 

  30. Rubio LM, Ludden PW (2005) Maturation of nitrogenase: a biochemical puzzle. J Bacteriol 187:405–414. https://doi.org/10.1128/JB.187.2.405-414.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney R, Gowda C, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotechnology 5:355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  Google Scholar 

  32. Kennedy C, Bishop P (2004) Genetics of nitrogen fixation and related aspects of metabolism in species of azotobacter: history and current status. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and regulation of nitrogen fixation in free-living bacteria. Nitrogen fixation: origins, applications, and research progress, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2179-8_2

    Chapter  Google Scholar 

  33. Pau RN, Mitchenall LA, Robson RL (1989) Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium. J Bacteriol 171:124–129. https://doi.org/10.1128/jb.171.1.124-129.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das HK (2019) Azotobacters as biofertilizers. Adv Appl Microbiol 08:1–43. https://doi.org/10.1016/bs.aambs.2019.07.001

    Article  CAS  Google Scholar 

  35. Qi W, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Front Plant Sci 9:313–321. https://doi.org/10.3389/fpls.2018.00313

    Article  Google Scholar 

  36. Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336. https://doi.org/10.1038/nature22009

    Article  CAS  PubMed  Google Scholar 

  37. Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein, but not the one previously reported. Plant Physiol 170:26–32. https://doi.org/10.1104/pp.15.01661

    Article  CAS  PubMed  Google Scholar 

  38. Laranjo M, Alexandrea A, Oliveiraa S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17. https://doi.org/10.1016/j.micres.2013.09.012

    Article  PubMed  Google Scholar 

  39. Khaitov B, Karimov A, Abdiev A, Farrukh J, Park K (2020) Beneficial effect of Rhizobium inoculation on growth and yield of chickpea (Cicer arietinum L.) in saline soils. Bulgarian J Agric Sci 26:96–104

    Google Scholar 

  40. Onwuka B, Mang B (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plant Agric Res 8:34. https://doi.org/10.15406/apar.2018.08.00288

    Article  Google Scholar 

  41. Montanez A, Danso SKA, Hardarson G (1995) The effect of temperature on nodulation and nitrogen fixation by five Bradyrhizobium japonicum strains. Appl Soil Ecol 2(3):165–174. https://doi.org/10.1016/0929-1393(95)00052-M

    Article  Google Scholar 

  42. Lindström K, Mousavi SA (2020) Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnol 13:1314–1335. https://doi.org/10.1111/1751-7915.13517

    Article  CAS  Google Scholar 

  43. Johnson G (2019) High throughput DNA extraction of legume root nodules for rhizobial metagenomics. AMB Express 9:1–6. https://doi.org/10.1186/s13568-019-0771-z

    Article  CAS  Google Scholar 

  44. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 9:257–262. https://doi.org/10.1007/s00792-008-0213-3

    Article  Google Scholar 

  45. Ma H, Egamberdieva D, Wirth S, Bellingrath-Kimura SD (2019) Effect of biochar and irrigation on soybean-rhizobium symbiotic performance and soil enzymatic activity in field rhizosphere. Agron 9:626. https://doi.org/10.3390/agronomy9100626

    Article  CAS  Google Scholar 

  46. Chouhan S, Chauhan K, Kataria S, Guruprasad KN (2008) Enhancement in leghemoglobin content of root nodules by exclusion of solar UV-A and UV-B radiation in soybean. J Plant Biol 51:132–138. https://doi.org/10.1007/BF03030722

    Article  CAS  Google Scholar 

  47. Siebielec S, Siebielec G, Klimkowicz-Pawlas A, Gałązka A, Grządziel J, Stuczyński T (2020) Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy 10:1429. https://doi.org/10.3390/agronomy10091429

    Article  CAS  Google Scholar 

  48. Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2019:9. https://doi.org/10.1155/2019/5794869

    Article  CAS  Google Scholar 

  49. Mushtaq Z, Faizan S, Gulzar B, Hakeem KR (2021) Inoculation of rhizobium alleviates salinity stress through modulation of growth characteristics, physiological and biochemical attributes, stomatal activities and antioxidant defence in Cicer arietinum L. J Plant Growth Regul 40:2148–2163. https://doi.org/10.1007/s00344-020-10267-1

    Article  CAS  Google Scholar 

  50. Chalasani D, Basu A, Pullabhotla SV, Jorrin B, Neal AL, Poole PS, Tkacz A (2021) Poor competitiveness of Bradyrhizobium in pigeon pea root colonization in Indian soils. Microbiology 12:e00423-e521. https://doi.org/10.1128/mBio.00423-21

    Article  CAS  Google Scholar 

  51. Dong R, Zhang J, Huan H, Bai C, Chen Z, Liu G (2017) High salt tolerance of a Bradyrhizobium strain and its promotion of the growth of Stylosanthes guianensis. Int J Mol Sci 18:1625. https://doi.org/10.3390/ijms18081625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng N, Yu BJ, Guo JS (2016) Ameliorative effects of inoculation with Bradyrhizobium japonicum on Glycine max and Glycine soja seedlings under salt stress. Plant Growth Regul 80(2):137–147. https://doi.org/10.1007/s10725-016-0150-6

    Article  CAS  Google Scholar 

  53. Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) Nitrogen and legumes: a meta-analysis. In: Legumes for soil health and sustainable management. Springer, Singapore, pp 277–314. https://doi.org/10.5402/2012/213729

  54. Hayat R, Ali S, Siddique MT, Chatha TH (2008) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40:711–722

    CAS  Google Scholar 

  55. Reinprecht Y, Schram L, Marsolais F, Smith TH, Hill B, Pauls KP (2020) Effects of nitrogen application on nitrogen fixation in common bean production. Front Plant Sci 11:1172. https://doi.org/10.3389/fpls.2020.01172

    Article  PubMed  PubMed Central  Google Scholar 

  56. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes. A meta-analysis. Field Crops Res 156:161–171. https://doi.org/10.1016/j.fcr.2013.11.004

    Article  Google Scholar 

  57. Mohale KC, Belane AK, Dakora FD (2014) Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc.) grown in farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Bol Fertil Soils 50:307–319. https://doi.org/10.1007/s00374-013-0841-3

    Article  CAS  Google Scholar 

  58. Hayashi S, Gresshoff PM, Ferguson BJ (2014) Mechanistic action of gibberellins in legume nodulation. J Int Plant Biol 4:971–978. https://doi.org/10.1111/jipb.12201

    Article  CAS  Google Scholar 

  59. Kidaj D, Wielbo J, Skorupska A (2012) Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol Res 167:144–150. https://doi.org/10.1016/j.micres.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  60. Tavares MJ, Nascimento FX, Glick BR, Rossi MJ (2018) The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean. Lett Appl Microbiol 66:252–259. https://doi.org/10.1111/lam.12847

    Article  CAS  PubMed  Google Scholar 

  61. Ibny FYI, Jaiswal SK, Mohammed M, Dakora FD (2019) Symbiotic effectiveness and ecologically adaptive traits of native rhizobial symbionts of Bambara groundnut (Vigna subterranean L. Verdc.) in Africa and their relationship with phylogeny. Sci Rep 9:12666. https://doi.org/10.1038/s41598-019-48944-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gedamu SA, Tsegaye EA, Beyene TF (2021) Effect of rhizobial inoculants on yield and yield components of faba bean (Vicia fabae L.) on vertisol of Wereillu District, South Wollo, Ethiopia. CABI Agric Biosci 2:8. https://doi.org/10.1186/s43170-021-00025-y

    Article  CAS  Google Scholar 

  63. Nyaga JW, Njeru EM (2020) Potential of native rhizobia to improve cowpea growth and production in semi-arid regions of Kenya. Front Agron 2:28. https://doi.org/10.3389/fagro.2020.606293

    Article  Google Scholar 

  64. Gebremariam M, Tesfay T (2021) Effect of P application rate and rhizobium inoculation on nodulation, growth, and yield performance of chickpea (Cicer arietinum L.). Int J Agron 2021:1–14. https://doi.org/10.1155/2021/8845489

    Article  CAS  Google Scholar 

  65. Yusif SA, Muhammad I, Hayatu NG, Sauwa MM, Tafinta IY, Mohammed A, Lukman SA, Abubakar GA, Hussain AM (2016) Effects of biochar and rhizobium inoculation on nodulation and growth of groundnut in Sokoto State, Nigeria. J Appl Life Sci Int 2016:1–9. https://doi.org/10.9734/JALSI/2016/27297

    Article  Google Scholar 

  66. Hoflich G, Wiehe W, Kohn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experienca 50:897–905. https://doi.org/10.1007/BF01923476

    Article  Google Scholar 

  67. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398. https://doi.org/10.1128/aem.66.8.3393-3398.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–68. https://doi.org/10.1023/A:1004326910584

    Article  CAS  Google Scholar 

  69. Hafeez FY, Safdar ME, Chaudhry AU, Malik KA (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aust J Exp Agric 44:617–622. https://doi.org/10.1071/EA03074

    Article  Google Scholar 

  70. Šenberga A, Dubova L, Alsiņa I, Strauta L (2017) Rhizobium sp.—a potential tool for improving protein content in peas and faba beans. Rural Sustain Res 37:2–9. https://doi.org/10.1515/plua-2017-0001

    Article  Google Scholar 

  71. Fatima Z, Bano A, Sial R, Aslam M (2005) Response of chickpea to plant growth regulators on nitrogen fixation and yield. Pak J Bot 2008:40. https://doi.org/10.15406/apar.2018.08.00326

    Article  Google Scholar 

  72. Bhatia CR, Nichterlein K, Maluszynski M (2001) Mutations affecting nodulation in grain legumes and their potential in sustainable cropping systems. Euphytica 120:415–432. https://doi.org/10.1023/A:1017550319206.pdf

    Article  Google Scholar 

  73. Okereke GU, Ayama N (1992) Sources of nitrogen and yield advantages for monocropping and mixed cropping with cowpeas (Vigna unguiculata L.) and upland rice (Oryza sativa L.). Biol Fertil Soils 13:225–228. https://doi.org/10.1007/BF00340580

    Article  CAS  Google Scholar 

  74. Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: impact on soil health and agroecosystem. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 511–539. https://doi.org/10.1007/978-981-13-0253-4_16

    Chapter  Google Scholar 

  75. Suma A, Latha M, John JK, Aswathi PV, Pandey CD, Ajinkya A (2021) Chapter 8 - Yard-long bean. In: Pratap, A.; Gupta, S. (eds) The beans and the peas, Woodhead Publishing, Oxford, pp 153–172, https://doi.org/10.1016/B978-0-12-821450-3.00010-X.

  76. Bhuiya MAH, Islam MS, Ahmed MS (2015) Response of lentil to bio and chemical fertilizers at farmers’ field. Bang J Agric Res 40:501–506. https://doi.org/10.3329/bjar.v40i3.25424

    Article  Google Scholar 

  77. Mathenge C, Thuita M, Masso C, Gweyi-Onyango J, Vanlauwe B (2019) Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. Soil Tillage Res 194:104290. https://doi.org/10.1016/j.still.2019.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  78. Agba OA, Mbah BN, Asiegbu JE, Eze SC (2013) Effects of Rhizobuim leguminosarum inoculation on the growth and yield of Mucuna flagellipies. Global J Agric Sci 12:45–53. https://doi.org/10.4314/gjass.v12i1.7

    Article  Google Scholar 

  79. Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, Santos-Villalobos SDL, Orozco-Mosqueda MDC, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11(2):219. https://doi.org/10.3390/agronomy11020219

    Article  CAS  Google Scholar 

  80. Bouizgarne KO, Ouhdouch Y (2015) Actinorhizal and rhizobial- legume symbioses for alleviation of abiotic stresses. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 273–295. https://doi.org/10.1007/978-81-322-2068-8_14

    Chapter  Google Scholar 

  81. Barquero M, Poveda J, Laureano-Marín AM, Ortiz-Liébana N, Brañas J, González-Andrés F (2022) Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. Front Plant Sci 13:1036973. https://doi.org/10.3389/fpls.2022.1036973

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hussain MB, Zahir ZA, Asghar HN, Mubaraka R, Naveed M (2016) Efficacy of rhizobia for improving photosynthesis, productivity, and mineral nutrition of maize. CLEAN 44(11):1564–1571. https://doi.org/10.1002/CLEN.201500912

    Article  CAS  Google Scholar 

  83. Sharma MP, Grover M, Chourasiya D, Bharti A, Agnihotri R, Maheshwari HS, Pareek A, Buyer JS, Sharma SK, Schütz L, Mathimaran N (2020) Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Front Microbiol 11:2219. https://doi.org/10.3389/fmicb.2020.509919

    Article  Google Scholar 

  84. Athar Md (1996) Influence of drought on competition between selected Rhizobium meliloti strains and naturalized soil rhizobia in alfalfa. Plant Soil 184(2):231–241. https://doi.org/10.1007/BF00010452

    Article  CAS  Google Scholar 

  85. Zahran HH, Sprent J (1986) Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167(3):303–309. https://doi.org/10.1007/BF00391332

    Article  CAS  PubMed  Google Scholar 

  86. Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212. https://doi.org/10.1128/aem.60.4.1206-1212.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoque M, Hannan A, Imran S, Paul NC, Mondal M, Sadhin M, Rahman M, Bristi JM, Dola FS, Hanif M, Ye W (2022) Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. J Plant Growth Regul 28:1–20. https://doi.org/10.1007/s00344-022-10633-1

    Article  CAS  Google Scholar 

  88. Liu Y, Guo Z, Shi H (2022) Rhizobium symbiosis leads to increased drought tolerance in Chinese milk vetch (Astragalus sinicus L.). Agronomy 12:725. https://doi.org/10.3390/agronomy120307

    Article  Google Scholar 

  89. Palai JB, Malik GC, Maitra S, Banerjee M (2021) Role of Rhizobium on growth and development of groundnut: a review. Int J Agric Environ Biotechnol 14:63–73. https://doi.org/10.30954/0974-1712.01.2021.7

    Article  Google Scholar 

  90. Wani PA, Khan MS, Zaidi A (2008) Effect of metaltolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42. https://doi.org/10.1007/s00244-007-9097-y

    Article  CAS  PubMed  Google Scholar 

  91. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45. https://doi.org/10.1016/j.chemosphere.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  92. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

    Article  CAS  PubMed  Google Scholar 

  93. Ullah S, Khan MY, Asghar HN, Akhtar MJ, Zahir ZA (2017) Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Ann Microbiol 67:739–749. https://doi.org/10.1007/s13213-017-1302-2

    Article  Google Scholar 

  94. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9

    Article  Google Scholar 

  95. de Silva JR, Alexandre A, Brígido C, Oliveira S (2017) Can stress response genes be used to improve the symbiotic performance of rhizobia. AIMS Microbiol 3(3):365. https://doi.org/10.3934/microbiol.2017.3.365

    Article  CAS  PubMed  Google Scholar 

  96. El-Sawah AM, El-Keblawy A, Ali DF, Ibrahim HM, El-Sheikh MA, Sharma A, Alhaj Hamoud Y, Shaghaleh H, Brestic M, Skalicky M, Xiong YC (2021) Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of Guar. Agriculture 11:194. https://doi.org/10.3390/agriculture11030194

    Article  CAS  Google Scholar 

  97. Arora NK, Verma M, Mishra J (2017) Rhizobial bioformulations: past, present and future. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 69–99. https://doi.org/10.1007/978-981-10-4862-3_4

    Chapter  Google Scholar 

  98. Damasceno R, Roggia I, Pereira C, de Sá E (2013) Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Can J Microbiol 59(11):716–719. https://doi.org/10.1139/cjm-2013-0508

    Article  CAS  PubMed  Google Scholar 

  99. Zhou JB, Xi JG, Chen ZJ, Li SX (2006) Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation: a soil column method. Pedosphere 16:245–252. https://doi.org/10.1016/S1002-0160(06)60050-7

    Article  CAS  Google Scholar 

  100. Kumar A, Meena VS, Roy P, Kumari R (2019) Role of Rhizobia for sustainable agriculture: lab to land. In: Kumar A, Meena V (eds) Plant growth promoting rhizobacteria for agricultural sustainability. Springer, Singapore, pp 129–149. https://doi.org/10.1007/978-981-13-7553-8_7

    Chapter  Google Scholar 

Download references

Funding

This is a collaborative review article and no funding was involved to prepare the article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SP, RKS, SM, LS, TS, JBP, US, BP, SN, VKV, MS and AH; writing—original draft preparation: SP, RKS, SM, LS, TS, JBP, US, BP, SN, VKV, MS and AH; writing—review and editing: MS, MB and AH; funding acquisition: MS, MB and AH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sagar Maitra or Akbar Hossain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitra, S., Praharaj, S., Brestic, M. et al. Rhizobium as Biotechnological Tools for Green Solutions: An Environment-Friendly Approach for Sustainable Crop Production in the Modern Era of Climate Change. Curr Microbiol 80, 219 (2023). https://doi.org/10.1007/s00284-023-03317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03317-w

Navigation