Skip to main content

Role of Rhizobia for Sustainable Agriculture: Lab to Land

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Abstract

Rhizobia is symbiotic diazotrophic soil bacteria infecting the roots of leguminous plants to form root nodules to fix molecular atmospheric nitrogen (N2) with the aid of nitrogenase enzyme, turning it into a more readily usable form for plants. Rhizobia also possess plant growth-promoting (PGP) properties witnessed by a series of molecular dialogue between the plant and the bacteria. Unraveling such mechanisms gave the insight toward multifunctional approach of rhizobia in the rhizosphere of legumes and compatible plants. Bioavailability of nutrients in the soil is enriched by rhizobial action due to metal solubilization and siderophore activity. The combined activity of phytohormones, enzymes, and siderophores contributes toward the growth and development of the concerned plant along with easy nutrient uptake and phytoremediation. Besides, rhizobia aid in biocontrol through antibiosis, parasitism, or competition with different pathogens for essential nutrient uptake. This has made it an important candidate for sustainable agriculture in various economies across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego, pp 1–13

    Book  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    Google Scholar 

  • Akhtar SM, Siddiqui AZ (2010) Role of plant growth promoting Rhizobacteria in biocontrol of disease and sustainable agriculture. In: Plant growth and health promoting bacteria, vol 18. Springer, Berlin/Heidelberg, pp 157–195

    Chapter  Google Scholar 

  • Alice C, Dicenzo CG, Marco B, Alessio M (2017) Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front Microbiol 8:2207

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects on radish (Raphanus sativus L.). Plant Soil 204:57–67

    Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Bardin DS, Chang HH, Joanna P, Amundsen EJ (2011) Biological control of Pythium damping -off of pea and sugar beet by Rhizobium leguminosarum bv. viciae. Can J Bot 82(3):291–296

    Article  Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant promoting Rhizobacteria emergence in agriculture. J Microbiol Biotechnol 28(4):1327–1350

    Article  Google Scholar 

  • Biswas JC (1998) Rhizobia inoculation improves nutrient uptake and growth of lowland. Soil Sci Soc Am J 64(5):1644–1650

    Article  Google Scholar 

  • Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (1988) Environmental inorganic chemistry: properties, processes, and estimation methods. In: Walton BT, Conway RA (eds) SETAC special publication series. Pergamon, New York

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. J Adv Agron 66:1–102

    Article  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7:191–226

    Article  CAS  PubMed  Google Scholar 

  • Buonassisi AJ, Coperman HS, Eaton GW (1986) Effect of Rhizobium spp. on Fusarium solani f.sp. phaseoli. Can J Plant Pathol 8:140–146

    Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012

    Article  CAS  PubMed  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophore of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Carter RA, Worsley PS, Gary S, Challis GL (2002) The Vbs gene that direct synthesis of siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF σ factor rpol. Mol Microbiol 44(5):1153–1166

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorous on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar. Phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2004) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. In: Proceeding of 26th annual conservation tillage conference for sustainable agriculture, Auburn, pp 58–65

    Google Scholar 

  • El-Batanony NH, Massoud ON, Mazen MM, Abd El-Monium MM (2007) The inhibitory effects of cultural filtrates of some wild Rhizobium spp. on some faba bean root rot pathogens and their antimicrobial synergetic effect when combined with Arbuscular Mycorrhiza (AM). World J Agric Sci 3:721–730

    Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Frank B (1889) Uber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft 7:332–346

    Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin. Trends Plant Sci:13

    Google Scholar 

  • Ghorpade VM, Gupta SG (2016) Siderophore production by Rhizobium nepotum isolated from “stem nodule of Aeschynomene indica”. Int J Adv Res Biol Sci 3(7):105–108

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theo Biol 190:63–68

    Article  CAS  Google Scholar 

  • Gutierrz-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Google Scholar 

  • Gwyn BA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Plant-associated bacteria. Springer, Dordrecht, pp 1–156

    Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azotobacter) on growth of maize (Zea mays L.) and accumulation of lead (pb) in different plant parts. Pak J Bot 42(6):4363–4370

    Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:1–92

    Article  CAS  Google Scholar 

  • Hao X, Taqhavi S, Xie P, Orbach MJ (2014) Phytoremediation of heavy and transition metals aided by legume rhizobia symbiosis. Int J Phytoremediation 16:179–207

    Article  CAS  PubMed  Google Scholar 

  • Hilali A, Prevost D, Broughton WJ, Antoun H (2001) Effects de inoculation avec des souces de Rhizobium leguminosarum biovar trifolii sur la crossance du dans deux sols du Maroc. Can J Microbiol 47:590–599

    Google Scholar 

  • Hu Y, Ribbe WM (2013) Biosynthesis of the iron molybdenum co-factor of Nitrogenase. J Biol Chem 288(19):13173–13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37

    Article  Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • Islam MZ, Sattar MA, Ashrafuzzaman M, Zulkerami B, Shamsuddoha ATM (2013) Evaluating some salinity tolerant Rhizobacterial strains to lentil production under salinity stress. Int J Agric Biol 15:499–504

    Google Scholar 

  • Joseph MV, Desai JD, Desai AJ (1983) Production of antimicrobial and bacteriocin-like substances by Rhizobium trifolii. Appl Environ Microbiol 45:2532–2535

    Google Scholar 

  • Kacem M, Kazouz F, Merabet C, Rezki M, De Lajudie P, Bekki A (2009) Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas Aceites 60:139–146

    Article  Google Scholar 

  • Kloepper WJ, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kochar M, Upadhyay A, Srivastava S (2011) Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens psd and plant growth regulation by hormone overexpression. Res Microbiol 162:426–435

    Article  CAS  PubMed  Google Scholar 

  • Lynch D, O’Brian J, Welch T, Clarke P, Cuív PÓ, Crosa JH, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal SM, Pati BR, Das AK, Ghosh AK (2008) Characterization of an arsenic tolerant and nodulation effective Rhizobium isolate of V. mungo. J Gen Appl Microbiol 54:93–99

    Google Scholar 

  • McGrath SP, Brookes PC, Giller KE (1988) Effects of potentially toxic elements in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biol Biochem 20(4):415–424

    Article  CAS  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2005) High-yielding and quality banana production through plant growth promoting rhizobacterial inoculation. Fruits 60:179–185

    Article  Google Scholar 

  • Modi M, Shah KS, Modi VV (1985) Isolation and characterization of catechol-like siderophore from cowpea Rhizobium RA-1. Arch Microbiol 141:156–158

    Article  CAS  Google Scholar 

  • Nambiar PTC, Sivaramakrishnan S (1987) Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe (59Fe). Appl Microbiol Lett 4:37–40

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganism. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Nowak B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  • Oberhansli T, Defago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo E, David L, Igracio R, Alejandro L, Miguel CA (2001) Legume–rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. Environ pollu book series 20:95–123

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peix A, Pedro M, Rivas BAA, Barrueco RC (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium under growth chamber condition. Soil Biol Biochem 33(1):103–110

    Google Scholar 

  • Peralta V, Ramon J (2002) Feasibility of using living alfalfa plants in the phytoextraction of cadmium(II), chromium(VI), copper(II), nickel(II), and zinc(II): agar and soil studies. Ph.D. thesis, The University of Texas, El Paso, AAT 3049704, pp 119

    Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollmann S, Muller A, Weiler EW (2006) Many roads lead to “auxin”: of nitrilases, synthases, and amidases. Plant Biol 8:326–333

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R (1971) Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase of Avena coleoptiles. Physiol Plant 24:272–281

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Riggs PJ, Marisa KC, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Rodelas B, Gonzalez-Lopez J, Salmeron V, Martinez-Toledo MV, Pozo C (1998) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agricultural soils in Spain. Appl Soil Ecol 8(1–3):51–60

    Article  Google Scholar 

  • Rodrigues C, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr Microbiol 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Roy N, Bhattacharyya P, Chakrabartty PK (1994) Iron acquisition during growth in an iron-deficient medium by Rhizobium sp. isolated from Cicer arietinum. Microbiology 140:2811–2820

    Article  CAS  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Rosselli R, Seeman T, van Velzen R, Polone E, Giacomini A, La Porta N, Geurts R, Muresu R, Squartini A (2017) Draft genome sequence of the nitrogen-fixing Rhizobium sullae type strain IS123T focusing on the key genes for symbiosis with its host Hedysarum coronarium L. Fronti Microbiol 8:1348

    Google Scholar 

  • Safronova IV, Vitaly SV, Göran EL, Yuriy AV, Andrei BA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented. Soil Biol Ferti Soils J42:267–272

    Article  Google Scholar 

  • Sardesai N, Babu CR (2001) Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. Microbiol Res 156:279–284

    Article  CAS  PubMed  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen–fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    Article  CAS  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2012) Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol 16:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1998) Effect of rhizobia and fungal antagonists in the control of root infecting fungi on sun flower and chickpea. Pak J Bot 30:279–286

    Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar SM (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting Rhizobacteria on lentil. World J Microbiol 23(3):435–441

    Article  Google Scholar 

  • Siripornadulsil W (2013) Cadmium–tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Safety 94:94–103

    Article  CAS  PubMed  Google Scholar 

  • Skorupska A, Derylo M, Lorkiewiez Z (1989) Siderophore production and utilization by Rhizobium trifolii. Biol Met 2:45–49

    Article  CAS  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. MPMI 21:958–966

    Article  PubMed  Google Scholar 

  • Tran Van V, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Google Scholar 

  • Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124

    Article  CAS  PubMed  Google Scholar 

  • Weller MD (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Ying T, Xiaomi W, Li L, Li Z, Luo YM (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  Google Scholar 

  • Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel JC, Gillis M, Dreyfus B, de Lajudie P (2004) Characterization of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395

    Article  PubMed  Google Scholar 

  • Zakhia TEA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use. Appl Biochem Microbiol J 42:117–126

    Article  Google Scholar 

  • Zheng Z, Wei F, Lee HY, Yang Z (2005) Responses of Azorhizobium caulinodans to cadmium stress. FEMS Microbiol Ecol 54:455–461

    Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Meena, V.S., Roy, P., Vandana, Kumari, R. (2019). Role of Rhizobia for Sustainable Agriculture: Lab to Land. In: Kumar, A., Meena, V. (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-13-7553-8_7

Download citation

Publish with us

Policies and ethics