Skip to main content
Log in

Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Open to all at any time.

References

  1. Chen QY, Costa M (2021) Arsenic: a global environmental challenge. Annu Rev Pharmacol Toxicol 61:47–63. https://doi.org/10.1146/annurev-pharmtox-030220-013418

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Xu B, Guo Z, Han J, Li H, Jin L, Chen F, Xiong Y (2019) Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J Environ Manage 237:163–169. https://doi.org/10.1016/j.jenvman.2019.02.067

    Article  CAS  PubMed  Google Scholar 

  3. Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207–215

    CAS  PubMed  Google Scholar 

  4. Villaescusa I, Bollinger JC (2008) Arsenic in drinking water: sources, occurrence and health effects (a review). Rev Environ Sci 7:307–323. https://doi.org/10.1007/s11157-008-9138-7

    Article  CAS  Google Scholar 

  5. Tariq A, Ullah U, Asif M, Sadiq I (2019) Biosorption of arsenic through bacteria isolated from Pakistan. Int Microbiol 22:59–68. https://doi.org/10.1007/s10123-018-0028-8

    Article  CAS  PubMed  Google Scholar 

  6. Zacarías-Estrada OL, Ballinas-Casarrubias L, Montero-Cabrera ME, Loredo-Portales R, Orrantia-Borunda E, Luna-Velasco A (2020) Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor. J Hazard Mater 384:121392. https://doi.org/10.1016/j.jhazmat.2019.121392

    Article  CAS  PubMed  Google Scholar 

  7. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626. https://doi.org/10.1021/es010027y

    Article  CAS  PubMed  Google Scholar 

  9. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325. https://doi.org/10.1111/j.1574-6976.2002.tb00617.x

    Article  CAS  PubMed  Google Scholar 

  10. Lindberg AL, Goessler W, Gurzau E, Koppova K, Rudnai P, Kumar R, Fletcher T, Leonardi G, Slotova K, Gheorghiu E, Vahter M (2006) Arsenic exposure in Hungary, Romania and Slovakia. J Environ Monitor 8:203–208

    Article  CAS  Google Scholar 

  11. Naito S, Matsumoto E, Shindoh K, Nishimura T (2015) Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem 168:294–301. https://doi.org/10.1016/j.foodchem.2014.07.060

    Article  CAS  PubMed  Google Scholar 

  12. Moens M, Branco R, Morais PV (2020) Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World J Microbiol Biotechnol 36:23. https://doi.org/10.1007/s11274-020-2800-0

    Article  CAS  PubMed  Google Scholar 

  13. Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477. https://doi.org/10.1016/S0883-2927(03)00062-3

    Article  CAS  Google Scholar 

  14. Uppal JS, Zheng Q, Le XC (2019) Arsenic in drinking water—recent examples and updates from Southeast Asia. Curr Opin Environ Sci Health 7:126–135. https://doi.org/10.1016/j.coesh.2019.01.004

    Article  Google Scholar 

  15. Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185. https://doi.org/10.1016/j.cej.2010.05.026

    Article  CAS  Google Scholar 

  16. Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8:753–768. https://doi.org/10.2217/fmb.13.38

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J phytoremediat 14:89–99. https://doi.org/10.1080/15226510903567471

    Article  Google Scholar 

  18. Kumar M, Yadav A, Ramanathan AL (2020) Arsenic contamination in environment, ecotoxicological and health effects, and bioremediation strategies for its detoxification. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 245–264

    Chapter  Google Scholar 

  19. Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322. https://doi.org/10.1016/j.soilbio.2005.04.010

    Article  CAS  Google Scholar 

  20. Irshad S, Xie Z, Wang J, Nawaz A, Luo Y, Wang Y, Mehmood S (2020) Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. J Hazard Mater 381:120903. https://doi.org/10.1016/j.jhazmat.2019.120903

    Article  CAS  PubMed  Google Scholar 

  21. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol 97:3827–3841. https://doi.org/10.1007/s00253-013-4838-5

    Article  CAS  Google Scholar 

  22. Chen C, Li L, Huang K, Zhang J, Xie WY, Lu Y, Dong S, Zhao FJ (2019) Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. ISME J. https://doi.org/10.1038/s41396-019-0451-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667. https://doi.org/10.1016/j.copbio.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  24. Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. In: Flora SJS (ed) Handbook of arsenic toxicology. Academic Press, New York, pp 627–674

    Chapter  Google Scholar 

  25. Rosen BP, Tamás MJ (2010) Arsenic transport in prokaryotes and eukaryotic microbes. In: Jahn TP, Bienert GP (eds) MIPs and their role in the exchange of metalloids. Springer, New York, pp 47–55

    Chapter  Google Scholar 

  26. Kumari N, Jagadevan S (2016) Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes—a comprehensive review. Chemosphere 163:400–412. https://doi.org/10.1016/j.chemosphere.2016.08.044

    Article  CAS  PubMed  Google Scholar 

  27. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. https://doi.org/10.1007/BF01569902

    Article  CAS  PubMed  Google Scholar 

  28. Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515. https://doi.org/10.1016/j.envint.2008.07.023

    Article  CAS  PubMed  Google Scholar 

  29. Yan L, Yin H, Zhang S, Leng F, Nan W, Li H (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178:209–217. https://doi.org/10.1016/j.jhazmat.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  30. Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367. https://doi.org/10.1128/jb.179.10.3365-3367.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347. https://doi.org/10.1007/s00284-003-4205-3

    Article  CAS  PubMed  Google Scholar 

  32. Sunita MSL, Prashant S, Chari PB, Rao SN, Balaravi P, Kishor PK (2012) Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. Ecotoxicology 21:202–212. https://doi.org/10.1007/s10646-011-0779-x

    Article  CAS  Google Scholar 

  33. Satyapal GK, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8:256–258. https://doi.org/10.4172/1948-5948.1000294

    Article  CAS  Google Scholar 

  34. Zhao C, Zhang Y, Chan Z, Chen S, Yang S (2015) Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front Microbiol 6:986. https://doi.org/10.3389/fmicb.2015.00986

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fekih IB, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473. https://doi.org/10.3389/fmicb.2018.02473

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liao VHC, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  37. Crognale S, Amalfitano S, Casentini B, Fazi S, Petruccioli M, Rossetti S (2017) Arsenic-related microorganisms in groundwater: a review on distribution, metabolic activities and potential use in arsenic removal processes. Rev Environ Sci 16:647–665. https://doi.org/10.1007/s11157-017-9448-8

    Article  CAS  Google Scholar 

  38. Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60:1–7. https://doi.org/10.1007/BF00395600

    Article  CAS  Google Scholar 

  39. Rowland IR, Davies MJ (1981) In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. J Appl Toxicol 1:278–283. https://doi.org/10.1002/jat.2550010508

    Article  CAS  PubMed  Google Scholar 

  40. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. https://doi.org/10.1016/S0014-5793(02)03186-1

    Article  CAS  PubMed  Google Scholar 

  42. Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478. https://doi.org/10.1073/pnas.89.20.9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glasser NR, Oyala PH, Osborne TH, Santini JM, Newman DK (2018) Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc Natl Acad Sci USA 115:E8614–E8623. https://doi.org/10.1073/pnas.1807984115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song B, Chyun E, Jaffé PR, Ward BB (2009) Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol Ecol 68:108–117. https://doi.org/10.1111/j.1574-6941.2009.00657.x

    Article  CAS  PubMed  Google Scholar 

  45. Saleem H, Rehman Y (2019) Arsenic respiration and detoxification by purple non-sulphur bacteria under anaerobic conditions. C R Biol 342:101–107. https://doi.org/10.1016/j.crvi.2019.02.001

    Article  PubMed  Google Scholar 

  46. Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    Article  CAS  PubMed  Google Scholar 

  47. Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132. https://doi.org/10.1016/S0969-2126(01)00566-4

    Article  CAS  PubMed  Google Scholar 

  48. Kalimuthu P, Heath MD, Santini JM, Kappler U, Bernhardt PV (2014) Electrochemically driven catalysis of Rhizobium sp. NT-26 arsenite oxidase with its native electron acceptor cytochrome c552. Biochim Biophys Acta 1837:112–120. https://doi.org/10.1016/j.bbabio.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ngegla JV, Zhou X, Chen X, Zhu X, Liu Z, Feng J, Zeng XC (2020) Unique diversity and functions of the arsenic-methylating microorganisms from the tailings of Shimen Realgar Mine. Ecotoxicology 29:86–96. https://doi.org/10.1007/s10646-019-02144-9

    Article  CAS  PubMed  Google Scholar 

  51. Wang PP, Bao P, Sun GX (2015) Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM FEMS Microbiol Lett 362:1–8

    Article  CAS  PubMed  Google Scholar 

  52. Ahsan N, Faruque K, Shamma F, Islam N, Akhand AA (2011) Arsenic adsorption by bacterial extracellular polymeric substances. Banglad J Microbiol 28:80–83. https://doi.org/10.3329/bjm.v28i2.11821

    Article  Google Scholar 

  53. Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550. https://doi.org/10.1016/S1001-0742(10)60570-0

    Article  CAS  Google Scholar 

  55. Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crameri A, Dawes G, Rodriguez E Jr, Silver S, Stemmer WP (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:436. https://doi.org/10.1038/nbt0597-436

    Article  CAS  PubMed  Google Scholar 

  58. Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467. https://doi.org/10.1146/annurev-earth-060313-054942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamamura S, Ike M, Fujita M (2003) Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J Biosci Bioeng 96:454–460. https://doi.org/10.1016/S1389-1723(03)70131-5

    Article  CAS  PubMed  Google Scholar 

  60. Uhrynowski W, Radlinska M, Drewniak L (2019) Genomic analysis of Shewanella sp. O23S—the natural host of the psheb plasmid carrying genes for arsenic resistance and dissimilatory reduction. Int J Mol Sci 20:1018. https://doi.org/10.3390/ijms20051018

    Article  CAS  PubMed Central  Google Scholar 

  61. Stolz JF, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganatanm M, Wormer L, Basu P (2007) Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ Sci Technol 41:818–823. https://doi.org/10.1021/es061802i

    Article  CAS  PubMed  Google Scholar 

  62. Huang K, Peng H, Gao F, Liu Q, Lu X, Shen Q, Le XC, Zhao FJ (2019) Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environ Pollut 247:482–487. https://doi.org/10.1016/j.envpol.2019.01.076

    Article  CAS  PubMed  Google Scholar 

  63. Das S, Jean JS, Kar S, Chou ML, Chen CY (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120. https://doi.org/10.1016/j.jhazmat.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  64. Nguyen VK, Lee MH, Park HJ, Lee JU (2015) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J Ind Eng Chem 21:451–458. https://doi.org/10.1016/j.jiec.2014.03.004

    Article  CAS  Google Scholar 

  65. Zhang J, Zhang X, Ni Y, Yang X, Li H (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem 42:1265–1271. https://doi.org/10.1016/j.procbio.2007.05.021

    Article  CAS  Google Scholar 

  66. Cheng C, Nie ZW, He LY, Sheng XF (2020) Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil. Environ Pollut 259:113832. https://doi.org/10.1016/j.envpol.2019.113832

    Article  CAS  PubMed  Google Scholar 

  67. Banerjee S, Majumdar J, Samal AC, Bhattachariya P, Santra SC (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. IOSR J Environ Sci Toxicol Food Technol 3:1–10

    Article  CAS  Google Scholar 

  68. Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q (2021) Insights into conventional and recent technologies for arsenic bioremediation: a systematic review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12487-8

    Article  Google Scholar 

  69. Podder MS, Majumder CB (2017) Simultaneous biosorption and bioaccumulation: a novel technique for the efficient removal of arsenic. Sustain Water Resour Manag 3:357–389. https://doi.org/10.1007/s40899-017-0103-x

    Article  Google Scholar 

  70. Tazaki K, Rafiqul IA, Nagai K, Kurihara T (2003) FeAs2 biomineralization on encrusted bacteria in hot springs: an ecological role of symbiotic bacteria. Can J Earth Sci 40:1725–1738. https://doi.org/10.1139/e03-081

    Article  CAS  Google Scholar 

  71. Roh Y, Chon CM, Moon JW (2007) Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF). Geosci J 11:415–423. https://doi.org/10.1007/BF02857056

    Article  CAS  Google Scholar 

  72. Rodriguez-Freire L, Sierra-Alvarez R, Root R, Chorover J, Field JA (2014) Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Res 66:242–253. https://doi.org/10.1016/j.watres.2014.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Antenozio ML, Giannelli G, Marabottini R, Brunetti P, Allevato E, Marzi D et al (2021) Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-86076-7

    Article  CAS  Google Scholar 

  74. Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80. https://doi.org/10.3389/fpls.2015.00080

    Article  PubMed  PubMed Central  Google Scholar 

  75. Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M (2019) Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci Total Environ 655:328–336. https://doi.org/10.1016/j.scitotenv.2018.11.242

    Article  CAS  PubMed  Google Scholar 

  76. Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411-e3416. https://doi.org/10.1128/AEM.03411-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Katoh M, Hashimoto K, Sato T (2016) Lead and antimony removal from contaminated soil by phytoremediation combined with an immobilization material. Clean: Soil, Air, Water 44:1717–1724. https://doi.org/10.1002/clen.201500162

    Article  CAS  Google Scholar 

  79. Arita S, Katoh M (2018) Arsenic removal from contaminated soil by phytoremediation combined with chemical immobilization. The international congress on environmental geotechnics. Springer, Singapore, pp 280–285

    Google Scholar 

  80. Yan M, Zeng X, Wang J, Meharg AA, Meharg C, Tang X et al (2020) Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils. J Hazard Mater 388:121795. https://doi.org/10.1016/j.jhazmat.2019.121795

    Article  CAS  PubMed  Google Scholar 

  81. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393. https://doi.org/10.1016/S0734-9750(03)00055-7

    Article  CAS  PubMed  Google Scholar 

  82. Kabiraj A, Majhi K, Halder U, Let M, Bandopadhyay R (2020) Role of plant growth promoting rhizobacteria (PGPR) for crop stress management. In: Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S (eds) Sustainable agriculture in the era of climate change. Springer, Cham, pp 367–389

    Chapter  Google Scholar 

  83. Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164. https://doi.org/10.1016/j.syapm.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  84. Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862. https://doi.org/10.1021/es010816f

    Article  CAS  PubMed  Google Scholar 

  85. Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419. https://doi.org/10.1016/j.chemosphere.2018.07.148

    Article  CAS  PubMed  Google Scholar 

  86. Banerjee A, Hazra A, Das S, Sengupta C (2020) Groundwater inhabited Bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. Int J Phytoremediat. https://doi.org/10.1080/15226514.2020.1725871

    Article  Google Scholar 

  87. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376. https://doi.org/10.1007/s10646-012-1031-z

    Article  CAS  PubMed  Google Scholar 

  88. Bhakta JN, Munekage Y, Ohnishi K, Jana BB, Balcazar JL (2014) Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut 225:2151

    Article  Google Scholar 

  89. Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103:2299–2308. https://doi.org/10.1111/j.1365-2672.2007.03471.x

    Article  CAS  PubMed  Google Scholar 

  90. Bachate SP, Cavalca L, Andreoni V (2009) Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol 107:145–156. https://doi.org/10.1111/j.1365-2672.2009.04188.x

    Article  CAS  PubMed  Google Scholar 

  91. Ghodsi H, Hoodaji M, Tahmourespour A, Gheisari MM (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5:5889–5895

    CAS  Google Scholar 

  92. Shakoori FR, Aziz I, Rehman A, Shakoori AR (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pak J Zool 42:331–338

    CAS  Google Scholar 

  93. Chitpirom K, Akaracharanya A, Tanasupawat S, Leepipatpibooim N, Kim KW (2009) Isolation and characterization of arsenic resistant bacteria from tannery wastes and agricultural soils in Thailand. Ann Microbiol 59:649–656. https://doi.org/10.1007/BF03179204

    Article  CAS  Google Scholar 

  94. Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G (2013) A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. BBA-Proteins Proteom 1834:2071–2079. https://doi.org/10.1016/j.bbapap.2013.06.007

    Article  CAS  Google Scholar 

  95. Collinet MN, Morin D (1990) Characterization of arsenopyrite oxidizing Thiobacillus. tolerance to arsenite, arsenate, ferrous and ferric iron. Anton Leeuw Int J G 57:237–244. https://doi.org/10.1007/BF00400155

    Article  CAS  Google Scholar 

  96. Banerjee A, Sarkar S, Gorai S, Kabiraj A, Bandopadhyay R (2021) High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. Electron J Biotechnol 53:1–7. https://doi.org/10.1016/j.ejbt.2021.05.006

    Article  CAS  Google Scholar 

  97. Li Q, Luo J, Xu R, Yang Y, Xu B, Jiang T, Yin H (2021) Synergistic enhancement effect of Ag+ and organic ligands on the bioleaching of arsenic-bearing gold concentrate. Hydrometallurgy 204:105723. https://doi.org/10.1016/j.hydromet.2021.105723

    Article  CAS  Google Scholar 

  98. Luo X, Jiang X, Xue S, Tang X, Zhou C, Wu C et al (2021) Arsenic biomineralization by iron oxidizing strain (Ochrobactrum sp.) isolated from a paddy soil in Hunan, China. Land Degrad Dev 32:2082–2093. https://doi.org/10.1002/ldr.3842

    Article  Google Scholar 

  99. Yang C, Ho YN, Makita R, Inoue C, Chien MF (2020) Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol Environ Saf 190:110075. https://doi.org/10.1016/j.ecoenv.2019.110075

    Article  CAS  PubMed  Google Scholar 

  100. Parsania S, Mohammadi P, Soudi MR (2021) Biotransformation and removal of arsenic oxyanions by Alishewanella agri PMS5 in biofilm and planktonic states. Chemosphere 284:131336. https://doi.org/10.1016/j.chemosphere.2021.131336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to UGC-Centre for Advanced Study, Department of Botany and DST-FIST, The University of Burdwan, Burdwan, for pursuing all the research facilities. AK is thankful to DHESTBT (WB-DBT) [Memo. No. 30 (Sanc.)-BT/ST/P/S&T/2G-48/2017] and UH is thankful to SRF (State Fund) for the financial assistance [Fc (Sc.)/RS/SF/BOT./2017-18/22].

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Contributions

RB1 and AK adopted the idea and wrote the manuscript. RB2 and UH collected the information. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajib Bandopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Authors declare that this manuscript is a review work, and therefore, it does not include any studies using animal and human beings.

Consent to Publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabiraj, A., Biswas, R., Halder, U. et al. Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation. Curr Microbiol 79, 131 (2022). https://doi.org/10.1007/s00284-022-02810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02810-y

Navigation