Skip to main content

Role of Plant Growth-Promoting Rhizobacteria (PGPR) for Crop Stress Management

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of Climate Change

Abstract

Crops under both abiotic and biotic stress are the major constraints on productivity. A number of factors like physical disorders, disease susceptibility, toxicity, hormonal imbalance, and nutritional deficiency interfere with the growth and development of plant under stress condition. Under these circumstances, rhizoremediation with the help of the plant growth-promoting rhizobacteria can mitigate stress-induced adverse effects on crop productivity. Plant growth-promoting rhizobacteria and their associated molecules play dual role by affecting both nutrition and resistance concomitantly through overlapping mechanisms. These free-living plant growth-promoting rhizobacteria actively colonize plant roots, exerting beneficial effects using their own metabolism or by directly affecting the plant metabolism. Rhizobial symbiosis has great agricultural importance in terms of improving soil fertility and crop productivity due to their synergistic as well as antagonistic interactions with other microbes in the soil environment. Plant growth-promoting rhizobacteria trigger elicitors, produce siderophores which deprive iron nutrition, and also induce cell wall-degrading extracellular enzymes as defense responses against plant pathogens. PGPR have the ability to induce the secretion of phytohormones, volatile compounds, antibiotics, and toxins which play an important role in plant growth. Rhizobacteria trigger N-acyl homoserine lactones (AHLs) like autoinducer molecules to regulate the gene expression as a part of quorum sensing. Other than these, plant growth-promoting rhizobacteria stimulate endogenous hormones of hosts to enhance stress tolerance. The mutualistic symbiosis triggers NOD factors and NOP effectors, while nonsymbiotic bacterial molecules enhance plant nutrient acquisition and growth. Here in this chapter, we have discussed and reviewed comprehensively the effectivity and mechanisms of plant growth-promoting rhizobacteria for enhancing crop productivity under different stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38(9):2882–2889

    CAS  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M et al (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65(1):14–23

    Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Anumalla M, Roychowdhury R, Geda CK, Bharathkumar S, Goutam KD, TSS M (2016) Mechanism of stress signal transduction and involvement of stress inducible transcription factors and genes in response to abiotic stresses in plant. Int J Recent Sci Res 7(8):12754–12771

    Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU et al (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315

    CAS  Google Scholar 

  • Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67(2):410–420

    CAS  PubMed  Google Scholar 

  • Aroua I, Abid G, Souissi F et al (2018) Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. Int Microbiol 22(1):111–120

    PubMed  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Plant microbe symbiosis: Fundamentals and advances, Springer, New Delhi, p 411–449

    Google Scholar 

  • Bal HB, Nayak L, Das S et al (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1–2):93–105

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136

    Google Scholar 

  • Basu A, Roychowdhury R, Bhattacharyya SS, Tah J (2012) Estimation of major heavy metals (Fe, Cu and Zn) in the fruit part of Cucumis sativus L. World J Sci Technol 2(7):01–03

    CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181(2):413–423

    CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): theirpotential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75(3):145–152

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D et al (2016) Plant growth promoting rhizobacteria Dietzianatronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  • Bidgoli RD, Azarnezhad N, Akhbari M et al (2019) Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agric Food Secur 8(1):2

    Google Scholar 

  • Bilal S, Khan AL, Shahzad R et al (2018) Mechanisms of Cr (VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr (VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicol Environ Saf 164:648–658

    CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569

    CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64(10):3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    CAS  PubMed  Google Scholar 

  • Cassan F, Perrig D, Sgroy V et al (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35

    CAS  Google Scholar 

  • Cedeño-García GA, Gerding M, Moraga G et al (2018) Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: effects on early nodulation in alfalfa. Chilean J Agric Res 78(3):360–369

    Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Pattanayak A, Mandal S, Das M, Roychowdhury R (2014) An overview of climate change: causes, trends and implications. In: Roychowdhury R (ed) Crop improvement in the era of climate change. IK International Publishing House, New Delhi, pp 1–29

    Google Scholar 

  • Chang JS, Yoon IH, Kim KW (2018) Arsenic biotransformation potential of microbial arsHresponses in the biogeochemical cycling of arsenic-contaminated groundwater. Chemosphere 191:729–737

    CAS  PubMed  Google Scholar 

  • Cramer GR, Quarrie SA (2002) Corrigendum to: abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29(1):111–115

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ et al (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    CAS  PubMed  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84

    Google Scholar 

  • Dhankher OP, Pilon-Smits EA, Meagher RB et al (2012) Biotechnological approaches for phytoremediation. In: Plant biotechnology and agriculture. Academic, San Diego, pp 309–328

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    CAS  PubMed  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY et al (2004) Will modifying plant ethylene status improve plant productivity in water-limited environments. In: Proceedings for the 4th international crop science congress, Brisbane, Australia 26

    Google Scholar 

  • Donate-Correa J, León-Barrios M, Pérez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266(1–2):261–272

    Google Scholar 

  • Elmerich C (2007) Historical perspective: from bacterization to endophytes. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 1–20

    Google Scholar 

  • Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67(6):2790–2798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Google Scholar 

  • Fernandez-Aunión C, Hamouda TB, Iglesias-Guerra F et al (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10(1):192

    PubMed  PubMed Central  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356

    CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    CAS  Google Scholar 

  • Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Biol 52(1):163–210

    CAS  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375(1–2):205–214

    CAS  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102

    CAS  Google Scholar 

  • Gupta A, Joia J, Sood A et al (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8(4):364–372

    CAS  Google Scholar 

  • Han Y, Wang R, Yang Z et al (2015) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Roychowdhury R, Karmakar J, Dey N, Nahar K, Fujita M (2015) Recent advances in biotechnology and genomic approaches for abiotic stress tolerance in crop plants. In: Devarajan T, Jeyabalan S (eds) Genomics and proteomics: concepts, technologies and applications. Apple Academic Press, Canada, pp 333–366

    Google Scholar 

  • Hmaeid N, Wali M, Mahmoud OM et al (2019) Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol 133:104–113

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z et al (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122(4):1129–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju W, Liu L, Fang L et al (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M et al (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL et al (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    CAS  PubMed  Google Scholar 

  • Kang W, Shi S, Xu L (2018) Diversity and symbiotic divergence of endophytic and non-endophytic rhizobia of Medicago sativa. Ann Microbiol 68(5):247–260

    Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107(2):225–231

    PubMed  Google Scholar 

  • Karlidag H, Yildirim E, Turan M et al (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). HortScience 48(5):563–567

    CAS  Google Scholar 

  • Kim YC, Glick BR, Bashan Y et al (2012) Enhancement of plant drought tolerance by microbes. In: Plant responses to drought stress. Springer, Berlin, pp 383–413

    Google Scholar 

  • Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In Proceedings of of the 4th International conference on plant pathogenic bacteria, Station de Pathologie Vegetale et Phytobacteriologie, vol 2. INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M et al (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320

    CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F et al (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151

    CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42(3):429–434

    CAS  Google Scholar 

  • Kumar A, Verma JP (2019) The role of microbes to improve crop productivity and soil health. In: Ecological wisdom inspired restoration engineering. Springer, Cham, pp 249–265

    Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Sci Rev 51(1–4):1–31

    CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11. Plant Pathol J 29(2):201–208

    PubMed  PubMed Central  Google Scholar 

  • Liu ZF, Ge HG, Li C et al (2015) Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR. Water Air Soil Pollut 226(3):1–10

    Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    CAS  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76(4):386–389

    CAS  Google Scholar 

  • Ma Y, Oliveira RS, Wu L et al (2015) Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J Toxicol Environ Health 78(13–14):931–944

    CAS  Google Scholar 

  • Malinich EA, Bauer CE (2018) The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 76(2):97–108

    CAS  Google Scholar 

  • Marimuthu S, Ramamoorthy V, Samiyappan R et al (2013) Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. J Phytopathol 161(6):405–411

    Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant 10(3):293–319

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18(2):49–53

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    CAS  PubMed  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73

    PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G et al (2009) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microb Biot 25(5):753–761

    Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M et al (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21(7):1001–1009

    CAS  PubMed  Google Scholar 

  • Mondani F, Khani K, Honarmand SJ et al (2019) Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agric Water Manage 213:707–713

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    PubMed  Google Scholar 

  • Nogales J, Campos R, Ben Abdelkhalek H et al (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15(3):225–232

    CAS  PubMed  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2010) Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196(4):273–285

    CAS  Google Scholar 

  • Numan M, Bashir S, Khan Y et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    CAS  PubMed  Google Scholar 

  • Nyoki D, Ndakidemi PA (2018) Root length, nodulation and biological nitrogen fixation of rhizobium inoculated soybean (Glycine max [L.] Merr.) grown under maize (Zea mays L.) intercropping systems and P and K fertilization. Adv Biores 9(1):173–180

    Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG et al (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13(1):735

    PubMed  PubMed Central  Google Scholar 

  • Ortiz N, Armada E, Duque E et al (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    PubMed  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–666

    CAS  PubMed  Google Scholar 

  • Ramanathan S, Shi W, Rosen BP et al (1998) Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369(3):189–195

    CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M et al (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloafusca (L.) Kunth), and description of two species, Azoarcusindigens sp. nov. and Azoarcuscommunis sp. nov. Int J Syst Evol Microbiol 43(3):574–584

    Google Scholar 

  • Roychowdhury R (2014) Crop improvement in the era of climate change. IK International Publishing House, New Delhi, p 496

    Google Scholar 

  • Roychowdhury R, Tah J (2011) Differential response by different parts of Solanum melongena L. for heavy metal accumulation. Plant Sci Feed 1(6):80–83

    Google Scholar 

  • Roychowdhury R, Taoutaou A, Hakeem KR, Gawwad MR, Tah J (2014) Molecular marker-assisted technologies for crop improvement. In: Roychowdhury R (ed) Crop improvement in the era of climate change. IK International Publishing House, New Delhi, pp 241–258

    Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2018) Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 401–415

    Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2019) Physiological and molecular responses for metalloid stress in rice – a comprehensive overview. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing/Elsevier, USA, pp 341–369

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Microbiol Res 169(1):20–32

    CAS  Google Scholar 

  • Sarma H, Prasad MN (2019) Metabolic engineering of Rhizobacteria associated with plants for remediation of toxic metals and metalloids. In: Transgenic plant technology for remediation of toxic metals and metalloids. Academic, London, pp 299–318

    Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N et al (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng 19(2):127–135

    CAS  Google Scholar 

  • Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7(50):5749–5757

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Singh LP (2005) Effects of fly ash, Pseudomonas striata and Rhizobium on the reproduction of nematode Meloidogyne incognita and on the growth and transpiration of pea. J Environ Biol 26(1):117–122

    PubMed  Google Scholar 

  • Singh RP, Jha PN (2017) Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis 73(3):213–222

    CAS  Google Scholar 

  • Singh A, Jain A, Sarma BK et al (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169(5–6):353–360

    CAS  PubMed  Google Scholar 

  • Sobariu DL, Fertu DI, Diaconu M et al (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    CAS  Google Scholar 

  • Song NH, Ahn YJ (2011) DcHsp17. 7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28(6):698–704

    CAS  Google Scholar 

  • Srivastava R, Khalid A, Singh US et al (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. Lycopersici for the management of tomato wilt. Biol Control 53(1):24–31

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223(Springer):33–52

    CAS  PubMed  Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms: perspectives for natural product mining. In: Bacteria in agrobiology: plant nutrient management. Springer, Heidelberg, pp 285–300

    Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacilluspolymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12(11):951–959

    CAS  PubMed  Google Scholar 

  • Timmusk S, El-Daim IA, Copolovici L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS et al (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM et al (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MF et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S et al (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119(2):539–551

    CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T et al (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):1–17

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    CAS  PubMed  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37(11):1557–1569

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  PubMed  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N et al (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK et al (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77(5):453–460

    Google Scholar 

  • Zhang HX, Hodson JN, Williams JP et al (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98(22):12832–12836

    CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y et al (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS et al (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273

    CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306–309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to UGC Centre for Advanced Studies, Department of Botany, The University of Burdwan, for pursuing the research work. AK is thankful to DHESTBT (WB-DBT) for providing the research fund [Memo no. 30 (Sanc.)-BT/ST/P/S&T/2G-48/2017]. KM and ML are grateful to UGC-JRF for supporting and proving fund to continue research work. U.H. is thankful to SRF (state-funded) for the finance assistance [Fc (Sc.)/RS/SF/BOT./2017-18/22].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabiraj, A., Majhi, K., Halder, U., Let, M., Bandopadhyay, R. (2020). Role of Plant Growth-Promoting Rhizobacteria (PGPR) for Crop Stress Management. In: Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S. (eds) Sustainable Agriculture in the Era of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-45669-6_17

Download citation

Publish with us

Policies and ethics