Skip to main content
Log in

Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the “In Flux” system when compared to the “No Flux” biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in “No Flux”, whereas in “In Flux” there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch GH, Varney J, Thompson NO, Moghissi O, Gould M, Payer JH (2016) NACE International IMPACT report 2016.

  2. Price SJ, Figueira RB (2017) Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings 7:1–51

    Article  CAS  Google Scholar 

  3. Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. National Technical Information Service, Alexandria

    Google Scholar 

  4. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76

    Article  CAS  PubMed  Google Scholar 

  5. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  6. Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641

    Article  CAS  PubMed  Google Scholar 

  7. Ma Y, Zhang Y, Zhang R, Guan F, Hou B, Duan J (2020) Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Appl Microbiol Biotechnol 104:515–525

    Article  CAS  PubMed  Google Scholar 

  8. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Xu D, Chena C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718

    Article  Google Scholar 

  10. Lugauskas A, Prosyčevas I, Ramanauskas R, Grigucevičienė A, Selskienė A, Pakštas V (2009) The influence of micromycetes on the corrosion behaviour of metals (steel, al) under conditions of the environment polluted with organic substances. Mater Sci 15:224–235

    Google Scholar 

  11. Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35(5):73

    Article  PubMed  CAS  Google Scholar 

  12. Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200(10):1447–1456

    Article  CAS  PubMed  Google Scholar 

  13. Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Pennec GL, Dufour A (2012) Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 12(21):3180–3192

    Article  CAS  PubMed  Google Scholar 

  14. Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68(2):272–282

    Article  CAS  PubMed  Google Scholar 

  15. Pinnock T, Voordouw J, Voordouw G (2018) Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions. Appl Microbiol Biotechnol 102:5741–5751

    Article  CAS  PubMed  Google Scholar 

  16. Wang LC, Li SF, Wang LB, Cui K, Zhang QL, Liu HB, Li G (2016) Relationships between the characteristics of CaCO3 fouling and the flow velocity in smooth tube. Exp Therm Fluid Sci 74:143–159

    Article  CAS  Google Scholar 

  17. Mumford AC, Adaktylou IJ, Emerson D (2016) Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol 82(22):6799–6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Procópio L (2020) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104(14):6397–6411

    Article  PubMed  CAS  Google Scholar 

  19. Ramírez GA, Hoffman CL, Lee MD et al (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679

    Article  PubMed  PubMed Central  Google Scholar 

  20. Procópio L (2020) Microbial community profiles grown on 1020 carbon steel surfaces in seawater-isolated microcosm. Ann Microbiol 70:13

    Article  CAS  Google Scholar 

  21. An D, Dong X, An A, Park HS, Strous M, Voordouw G (2016) Metagenomic analysis indicates Epsilonproteobacteria as a potential cause of microbial corrosion in pipelines injected with bisulfite. Front Microbiol 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I (2017) Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol 8:99

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X (2017) Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of illumina MiSeq sequencing. Front Microbiol 8:1737

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647

    Article  PubMed  PubMed Central  Google Scholar 

  25. Emerson D (2018) The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34(9):989–1000

    Article  CAS  PubMed  Google Scholar 

  26. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kryachko Y, Hemmingsen SM (2017) The role of localized acidity generation in microbially influenced corrosion. Curr Microbiol 74(7):870–876

    Article  CAS  PubMed  Google Scholar 

  28. McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73

    Article  PubMed  CAS  Google Scholar 

  30. Little B, Lee J, Ray R (2007) A review of “green” strategies to prevent or mitigate microbiologically influenced corrosion. Biofouling 23:87–97

    Article  CAS  PubMed  Google Scholar 

  31. Trueba A, Eguía E, Milad MM (2010) Biofouling growth on tubular heat exchangers. Mathematical model and simulation. J Marit Res 8:15–34

    Google Scholar 

  32. Trueba A, García S, Otero FM, Vega LM, Madariaga E (2015) Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater. Biofouling 31:527–534

    Article  CAS  PubMed  Google Scholar 

  33. Tsai YP (2005) Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Biofouling 21:267–277

    Article  PubMed  Google Scholar 

  34. Abdeen DH, Atieh MA, Merzougui B (2020) Corrosion behaviour of 316L stainless steel in CNTs-water nanofluid: effect of temperature. Materials (Basel) 14(1):119

    Article  CAS  Google Scholar 

  35. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR (2017) Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C 77:1261–1274

    Article  CAS  Google Scholar 

  36. Capão A, Moreira-Filho P, Garcia M, Bitati S, Procópio L (2020) Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnol Lett 42(8):1431–1448

    Article  PubMed  CAS  Google Scholar 

  37. De La Fuente MJ, Daille LK, De la Iglesia R, Walczak M, Armijo F, Pizarro GE, Vargas IT (2020) Electrochemical bacterial enrichment from natural seawater and its implications in biocorrosion of stainless-steel electrodes. Materials (Basel) 13(10):2327

    Article  CAS  Google Scholar 

  38. Teodósio JS, Simões M, Alves MA, Melo LF, Mergulhão FJ (2012) Setup and validation of flow cell systems for biofouling simulation in industrial settings. Sci World J 2012:361496

    Article  CAS  Google Scholar 

  39. Cai D, Wu J, Chai K (2021) Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp. ACS Omega 6(5):3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng S, Tian J, Chen S, Lei Y, Chang X, Liu T, Yin Y (2009) Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) corrosion behavior. Mater Sci Eng C 29(3):751–755

    Article  CAS  Google Scholar 

  41. Dang H, Lovell CR (2015) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guo Z, Liu T, Cheng YF, Guo N, Yin Y (2017) Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion. Colloids Surf B 157:157–165

    Article  CAS  Google Scholar 

  43. Huang Y, Zhou E, Jiang C, Jia R, Liu S, Xu D, Wang F (2018) Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochem Commun 94:9–13

    Article  CAS  Google Scholar 

  44. Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery. Bioremediation J 23:302–310

    Article  CAS  Google Scholar 

  45. Moradi M, Song Z, Yang L, Jiang J, He J (2014) Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros Sci 84:103–112

    Article  CAS  Google Scholar 

  46. Philips J, Van den Driessche N, De Paepe K, Prévoteau A, Gralnick JA, Arends JBA, Rabaey K (2018) A novel Shewanella isolate enhances corrosion by using metallic iron as the electron donor with fumarate as the electron acceptor. Appl Environ Microbiol 84:e01154-e1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Procópio L (2021) The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-12544-2

    Article  PubMed  Google Scholar 

  48. Salgar-Chaparro SJ, Darwin A, Kaksonen AH, Machuca LL (2020) Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Sci Rep 10:12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carvalho ML, Doma J, Sztyler M, Beech I, Cristiani P (2014) The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Bioelectrochemistry 97:2–6

    Article  CAS  PubMed  Google Scholar 

  50. Korenblum E, Valoni E, Penna M (2010) Seldin L (2010) Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Appl Microbiol Biotechnol 85(3):791–800

    Article  CAS  PubMed  Google Scholar 

  51. Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13:3059–3074

    Article  CAS  PubMed  Google Scholar 

  52. Procópio L, Macrae A, van Elsas JD, Seldin L (2013) The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications. Antonie Van Leeuwenhoek 103(3):635–646

    Article  PubMed  CAS  Google Scholar 

  53. Abed RMM, Al Fahdi D, Muthukrishnan T (2019) Short-term succession of marine microbial fouling communities and the identification of primary and secondary colonizers. Biofouling 35:526–540

    Article  CAS  PubMed  Google Scholar 

  54. Abdoli L, Suo X, Li H (2016) Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings. Colloids Surf B 145:688–694

    Article  CAS  Google Scholar 

  55. Karn SK, Fang G, Duan J (2017) Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol 8:2038

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krishnan M, Dahms HU, Seeni P, Gopalan S, Sivanandham V, Jin-Hyoung K, James RA (2017) Multi metal assessment on biofilm formation in offshore environment. Mater Sci Eng C 73:743–755

    Article  CAS  Google Scholar 

  57. Shen Y, Dong Y, Yang Y, Li Q, Zhu H, Zhang W, Dong L, Yin Y (2020) Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film. Bioelectrochemistry 132:107408

    Article  CAS  PubMed  Google Scholar 

  58. Eguía E, Trueba A, Río-Calonge B, Girón A, Bielva C (2008) Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment. Int Biodeterior Biodegrad 62(2):79–87

    Article  CAS  Google Scholar 

  59. Garcia M, Procópio L (2020) Distinct profiles in microbial diversity on carbon steel and different welds in simulated marine microcosm. Curr Microbiol 77(6):967–978

    Article  CAS  PubMed  Google Scholar 

  60. García S, Trueba A, Vega LM, Madariaga E (2016) Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. Biofouling 32(10):1185–1193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LP conceived and designed experiments. BNR and LP conducted all experiments in laboratory conditions. LP analyzed the data, designed the graphs, and written the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Luciano Procópio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufino, B.N., Procópio, L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel. Curr Microbiol 78, 3394–3402 (2021). https://doi.org/10.1007/s00284-021-02596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02596-5

Navigation