Skip to main content
Log in

Distinct Profiles in Microbial Diversity on Carbon Steel and Different Welds in Simulated Marine Microcosm

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The main studies on the corrosion of metals induced by microorganisms are directed only to the surface of the metal, without considering the presence of welds between these surfaces. For this reason, we evaluated the difference of microbial community grown in carbon steel coupons, and two different types of welds, E7018 and Tungsten electrodes, exposed under simulated microcosm. After 30 days, they were recovered, the biofilms scraped and the microbial communities analyzed by 16S rRNA gene sequencing. The results showed that there was a differentiated distribution among the three samples collected. Proteobacteria phylum composed most of the species described in all samples. At the class level, Gammaproteobacteria was the most detected, followed by Alphaproteobacteria and Flavobacteriia. The most prevalent order was Alteromonadales, which was present in Weld2, followed by Rhodobacteriales, which was more prevalent in Fe1020 and Weld1. The orders Cytophagales, Sphingomonadales, and Burkholderiales were described in higher number in Fe1020, whereas Oceanospirillales, Thiotrichales, Flavobacteriales, Rhodospirillales, and Kordiimonadales were higher in samples Weld1 and Weld2. The analyses between the three evaluated conditions show the presences of bacterial groups preferred by different types of metal, suggesting that approaches in the control of biocorrosion should take into account the chemical composition of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An D, Dong X, An A, Park HS, Strous M, Voordouw G (2016) Metagenomic analysis indicates Epsilonproteobacteria as a potential cause of microbial corrosion in pipelines injected with bisulfite. Front Microbiol 7:28. https://doi.org/10.3389/fmicb.2016.00028

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blackwood D (2018) An electrochemical perspective microbiologically influenced corrosion. Corros Mater Degrad 1:59–76. https://doi.org/10.3390/cmd1010005

    Article  Google Scholar 

  3. Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I (2017) Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol 8:99. https://doi.org/10.3389/fmicb.2017.00099

    Article  PubMed  PubMed Central  Google Scholar 

  4. Borenstein SW (1991) Microbiologically influenced corrosion of austenitic stainless steel weldments. Mater Perform 30:52–54

    CAS  Google Scholar 

  5. Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283:25803–25811. https://doi.org/10.1074/jbc.M802496200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Colwell RK (2005) EstimateS, Statistical estimation of species richness and shared species from samples. Version 7.5

  7. Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in pacific ocean coastal seawaters. Environ Microbiol 13:3059–3074. https://doi.org/10.1111/j.1462-2920.2011.02583.x

    Article  PubMed  CAS  Google Scholar 

  8. Davis JR (2006) Corrosion of weldments, 1st edn. ASM International, Materials Park

    Google Scholar 

  9. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  10. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions, a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  Google Scholar 

  11. Hedrich S, Schlömann M, Johnson B (2011) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564

    Article  CAS  Google Scholar 

  12. Hsieh TC, Ma KH, Chao A (2016) iNEXT, an R package for rarefaction and extrapolation of species diversity Hill numbers. Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  13. Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73. https://doi.org/10.1128/AEM.02767-14

    Article  PubMed  CAS  Google Scholar 

  14. Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. National Technical Information Service, Alexandria, VA

    Google Scholar 

  15. Krishnan M, Dahms HU, Seeni P, Gopalan S, Sivanandham V, Jin-Hyoung K, James RA (2017) Multi metal assessment on biofilm formation in offshore environment. Mater Sci Eng C 73:743–755. https://doi.org/10.1016/j.msec.2016.12.062

    Article  CAS  Google Scholar 

  16. Lane RA (2005) Under the microscope, understanding, detecting, and preventing microbiologically influenced corrosion. J Fail Anal Prev 5:10–12

    Article  Google Scholar 

  17. Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X (2017) Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of Illumina MiSeq sequencing. Front Microbiol 8:1737. https://doi.org/10.3389/fmicb.2017.01737

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lian T, Mu Y, Jin J, Ma Q, Cheng Y, Cai Z, Nian H (2019) Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. Peer J 7:e6412. https://doi.org/10.7717/peerj.6412

    Article  PubMed  CAS  Google Scholar 

  19. Liduino VS, Lutterbach MTS, Sérvulo EFC (2018) Biofilm activity on corrosion of API 5L X65 steel weld bead. Colloids Surf B 172:43–50. https://doi.org/10.1016/j.colsurfb.2018.08.026

    Article  CAS  Google Scholar 

  20. Liengen T, Basseguy R, Feron D, Beech IB (2014) Understanding biocorrosion, fundamentals and applications, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  21. Little B, Wagner P, Mansfeld F (1992) An overview of microbiologically influenced corrosion. Electrochima Acta 37:2185–2194

    Article  CAS  Google Scholar 

  22. Liu F, Zhang J, Zhang S, Li W, Duan J, Hou B (2012) Effect of sulphate reducing bacteria on corrosion of Al Zn In Sn sacrificial anodes in marine sediment. Mater Corros 63:431–437. https://doi.org/10.1002/maco.201005955

    Article  CAS  Google Scholar 

  23. Mai TL, Sofyan NI, Fergus JW, Gale WF, Conner DE (2006) Attachment of Listeria monocytogenes to an austenitic stainless steel after welding and accelerated corrosion treatments. J Food Prot 69:1527–1532

    Article  Google Scholar 

  24. McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments, exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767. https://doi.org/10.3389/fmicb.2016.00767

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200:1447–1456. https://doi.org/10.1007/s00203-018-1559-2

    Article  PubMed  CAS  Google Scholar 

  26. Parks DH, Beiko RG (2013) Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J 7:173–183. https://doi.org/10.1038/ismej.2012.88

    Article  PubMed  CAS  Google Scholar 

  27. Perrichon F, Godse K, Rostek M (2015) An overview of welding consumables with high corrosion resistance in marine environment. Int J Inst Mat Malaysia 2:323–333

    Google Scholar 

  28. Phan HC, Wade SA, Blackall LL (2019) Is marine sediment the source of microbes associated with accelerated low water corrosion? Appl Microbiol Biotechnol 103:449–459. https://doi.org/10.1007/s00253-018-9455-x

    Article  PubMed  CAS  Google Scholar 

  29. Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35:73. https://doi.org/10.1007/s11274-019-2647-4

    Article  PubMed  CAS  Google Scholar 

  30. Procópio L (2020) The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 42:1–16. https://doi.org/10.1007/s10529-019-02789-w

    Article  CAS  Google Scholar 

  31. Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647. https://doi.org/10.3389/fmicb.2015.00647

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ramírez GA, Hoffman CL, Lee MD, Lesniewski RA, Barco RA, Garber A, Toner BM, Wheat CG, Edwards KJ, Orcutt BN (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679

    Article  Google Scholar 

  33. Ramkumara KD, Dagura AH, Kartha AA, Subodh MA, Vishnua C, Arun D, Kumar MGV, Abraham WS, Chatterjee A, Abraham A, Abraham J (2017) Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process 30:27–40. https://doi.org/10.1016/j.jmapro.2017.09.001

    Article  Google Scholar 

  34. Shin D, Lee Y, Park J, Moon HS, Hyun SP (2017) Soil microbial community responses to acid exposure and neutralization treatment. J Environ Manage 204:383–393. https://doi.org/10.1016/j.jenvman.2017.09.014

    Article  PubMed  CAS  Google Scholar 

  35. Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing beta-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488

    Article  Google Scholar 

  36. Thompon NG, Yunocivh M, Dunmiret D (2007) Cost of corrosion and corrosion maintenance strategies. Corros Rev 25:247–261

    Article  Google Scholar 

  37. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion, looking to the future. Int Microbiol 8:169–180

    PubMed  CAS  Google Scholar 

  38. Wan H, Song D, Zhang D, Du C, Xu D, Liu Z, Ding D, Li X (2018) Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 121:18–26. https://doi.org/10.1016/j.bioelechem.2017.12.011

    Article  PubMed  CAS  Google Scholar 

  39. Wang H, Sodagari M, Ju LK, Newby BM (2013) Effects of shear on initial bacterial attachment in slow flowing systems. Colloids Surf B 109:32–39

    Article  CAS  Google Scholar 

  40. Wickham H (2009) Ggplot2, elegant graphics for data analysis. Springer, New York, NY

    Google Scholar 

  41. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen EB, Hoste B, Gillis M, Kersters K, Auling G, De Ley J (1989) Hydrogenophaga, a New Genus of Hydrogen-Oxidizing Bacteria That Includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Procópio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, M., Procópio, L. Distinct Profiles in Microbial Diversity on Carbon Steel and Different Welds in Simulated Marine Microcosm. Curr Microbiol 77, 967–978 (2020). https://doi.org/10.1007/s00284-020-01898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01898-4

Navigation