Skip to main content
Log in

The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Metagenomic sequencing data is deposited and available on the NCBI Sequence Read Archive (SRA) database under accession no. PRJNA660155, in SAMN15939822 Biosample accession numbers.

References

  • Abed RMM, Al-Thukair A, De Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301

    Article  CAS  Google Scholar 

  • Abena MTB, Chen G, Chen Z, Zheng X, Li S, Li T, Zhong W (2020) Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech 10(2):42. https://doi.org/10.1007/s13205-019-2027-7

    Article  Google Scholar 

  • Al-Mailem DM, Al-Awadh H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15(1):39–44. https://doi.org/10.1007/s00792-010-0335-2

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment. Can J Microbiol 59(12):837–844. https://doi.org/10.1139/cjm-2013-0698

    Article  CAS  Google Scholar 

  • Andreeva DV, Sviridov DV, Masic A, Möhwald H, Skorb EV (2012) Nanoengineered metal surface capsules: construction of a metal-protection system. Small 8(6):820–825. https://doi.org/10.1002/smll.201102365

    Article  CAS  Google Scholar 

  • Bachran M, Kluge S, Lopez-Fernandez M, Cherkouk A (2019) Microbial diversity in an arid, naturally saline environment. Microb Ecol 78(2):494–505. https://doi.org/10.1007/s00248-018-1301-2

    Article  CAS  Google Scholar 

  • Beech IB, Sztyler M, Gaylarde CC, Smith WL, Sunner J (2014) Biofilms and biocorrosion. In: Liengen T, Fe’iron D, Basseguy R, Beech IB (eds) Understanding biocorrosion: fundamentals and applications. Elsevier, Amsterdam, pp 33–56

    Chapter  Google Scholar 

  • Beliakova EV, Rozanova EP, Borzenkov IA, Turova TP, Pusheva MA, Lysenko AM, Kolganov TV (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov, sp. Nov, isolated from an oil field. Mikrobiologiia 75(2):201–211

    CAS  Google Scholar 

  • Bonfa MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676. https://doi.org/10.1016/j.chemosphere.2011.05.005

    Article  CAS  Google Scholar 

  • Booker AE, Borton MA, Daly RA, Welch SA, Nicora CD, Hoyt DW, Wilson T, Purvine SO, Wolfe RA, Sharma S, Mouser PJ, Cole DR, Lipton MS, Wrighton KC, Wilkins MJ (2017) Sulfide generation by dominant Halanaerobium microorganisms in hydraulically fractured shales. Msphere 2(4):e00257–e00217. https://doi.org/10.1128/mSphereDirect.00257-17

    Article  CAS  Google Scholar 

  • Cai M, Wang L, Cai H, Li Y, Wang YN, Tang YQ, Wu XL (2011) Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov, isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 61(Pt 8):1767–1775. https://doi.org/10.1099/ijs.0.025932-0

    Article  CAS  Google Scholar 

  • Canfora L, Bacci G, Pinzari F, Lo Papa G, Dazzi C, Benedetti A (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9(9):e106662. https://doi.org/10.1371/journal.pone.0106662

    Article  CAS  Google Scholar 

  • Capão A, Moreira-Filho P, Garcia M, Bitati S, Procópio L (2020) Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnol Lett 42:1431–1448. https://doi.org/10.1007/s10529-020-02927-9

    Article  CAS  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798. https://doi.org/10.1007/s00253-011-3706-4

    Article  CAS  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SGW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79(2):145–153

    Article  Google Scholar 

  • Emerson D (2019) The role of iron-oxidizing bacteris in biocorrosion: a review. Biofoouling 34:989–1000. https://doi.org/10.1080/08927014.2018.1526281

    Article  CAS  Google Scholar 

  • Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78(12):4386–4399. https://doi.org/10.1128/AEM.07637-11

    Article  CAS  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236. https://doi.org/10.1128/AEM.02848-13

    Article  CAS  Google Scholar 

  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14(7):1772–1787. https://doi.org/10.1111/j.1462-2920.2012.02778.x

    Article  CAS  Google Scholar 

  • Garcia M, Procópio L (2020) Distinct profiles in microbial diversity on carbon steel and different welds in simulated marine microcosm. Curr Microbiol 77(6):967–978. https://doi.org/10.1007/s00284-020-01898-4

    Article  CAS  Google Scholar 

  • García MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov, sp. nov, a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55(Pt 5):1789–1795

    Article  Google Scholar 

  • Ghevariya CM, Bhatt JK, Dave BP (2011) Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using response surface methodology. Bioresour Technol 102:9668–9674. https://doi.org/10.1016/j.biortech.2011.07.069

    Article  CAS  Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  CAS  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75(22):7086–7096. https://doi.org/10.1128/AEM.01123-09

    Article  CAS  Google Scholar 

  • Gupta RS, Naushad S, Fabros R, Adeolu M (2016) A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov, and Halococcaceae fam. nov, and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie Van Leeuwenhoek 109(4):565–587. https://doi.org/10.1007/s10482-016-0660-2

    Article  Google Scholar 

  • Hamzah E, Hussain MF, Ibrahim Z, Abdolahi A (2014) Corrosion behaviour of carbon steel in sea water medium in presence of P. aeruginosa bacteria. Arab J Sci Eng 39:6863–6870

    Article  CAS  Google Scholar 

  • Hyun Y, Kim H, Kim YH (2014) Effects of chloride and crevice on corrosion resistance of stainless steels buried in soil within Seoul Metropolitan. Met Mater Int 20:249–260

    Article  CAS  Google Scholar 

  • Ivanova N, Sikorski J, Chertkov O, Nolan M, Lucas S, Hammon N, Deshpande S (2011) Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). Stand Genomic Sci 4(3):312–321. https://doi.org/10.4056/sigs.1824509

    Article  CAS  Google Scholar 

  • Jozefaciuk G, Toth T, Szendrei G (2006) Surface and micropore properties of saline soil profiles. Geoderma 135:1–15. https://doi.org/10.1016/j.geoderma.2005.10.007

    Article  Google Scholar 

  • Kato S (2016) Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 9(2):141–148. https://doi.org/10.1111/1751-7915.12340

    Article  CAS  Google Scholar 

  • Kerkar S, Loka Bharathi PA (2011) G model re-visited: seasonal changes in the kinetics of sulphate reducing activity in the salterns of Ribander, Goa, India. Geomicrobiol J 28(3):187–197

    Article  CAS  Google Scholar 

  • Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60(2):287–298

    Article  CAS  Google Scholar 

  • Koch GH, Varney J, Thompson NO, Moghissi O, Gould M, Payer JH (2016) NACE International IMPACT report 2016

  • Lahme S, Enning D, Callbeck CM, Menendez-Vega D, Curtis TP, Head IM, Hubert CRJ (2019) Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Appl Environ Microbiol 85(3):e01891–e01818. https://doi.org/10.1128/AEM.01891-18

    Article  CAS  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline waste water: a literature review. Water Res 40:3671–3682. https://doi.org/10.1016/j.watres.2006.08.027

    Article  CAS  Google Scholar 

  • Li Z, Wan H, Song D, Liu X, Li Z, Du C (2019) Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Bioelectrochemy 126:121–129. https://doi.org/10.1016/j.bioelechem.2018.12.001

    Article  CAS  Google Scholar 

  • Liang R, Davidova IA, Marks CR, Stamps BW, Harriman BH, Stevenson BS, Duncan KE, Suflita JM (2016) Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion. Front Microbiol 7:988. https://doi.org/10.3389/fmicb.2016.00988

    Article  Google Scholar 

  • Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt NJ (2019) Vertical response of microbial community and degrading genes to petroleum hydrocarbon contamination in saline alkaline soil. J Environ Sci (China) 81:80–92. https://doi.org/10.1016/j.jes.2019.02.001

    Article  Google Scholar 

  • Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8(1):15. https://doi.org/10.1186/2046-9063-8-15

    Article  CAS  Google Scholar 

  • Minai-Tehrani D, Herfatmanesh A, Azari-Dehkordi F, Minuoi S (2006) Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pak J Biol Sci 9(8):1531–1535

    Article  CAS  Google Scholar 

  • Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200:1447–1456

    Article  CAS  Google Scholar 

  • Muthukumar N (2014) Petroleum products transporting pipeline corrosion—a review. In: Fanun M (ed) The role of colloidal systems in environmental protection, Elsevier pp 527-571. https://doi.org/10.1016/B978-0-444-63283-8.00021-1.

  • NACE RP-07-75 (2005) Standard recommended practice, preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. NACE International, Houston

  • Ooma T, Tamura N, Shimizu T, Takazawa M, Yamaguchi K, Takase T, Nakai K, Nakagami M, Wada H (2014) Evaluation of pH and redox conditions in subsurface disposal system for assessing influence of metal corrosion. Corr Eng S Tech 49:492–497

    Article  CAS  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease of metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiol 466:61–72

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Czapla J, Płociniczak T, Piotrowska-Seget Z (2019) The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol Environ Saf 169:615–622. https://doi.org/10.1016/j.ecoenv.2018.11.081

    Article  CAS  Google Scholar 

  • Parthipan P, Narenkumar J, Elumalai P, Preethi PS, Nanthini AUR, Agrawal A, Rajasekar A (2017) Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J Mol Liq 240:121–127

    Article  CAS  Google Scholar 

  • Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70.1–R70.19

    Article  Google Scholar 

  • Płociniczak T, Fic E, Pacwa-Płociniczak M, Pawlik M, Piotrowska-Seget Z (2017) Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Int J Phytoremediation 19(7):614–620. https://doi.org/10.1080/15226514.2016.1278420

    Article  CAS  Google Scholar 

  • Pollock J, Weber KA, Lack J, Achenbach LA, Mormile MR, Coates JD (2007) Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Appl Microbiol Biotechnol 77(4):927–934. https://doi.org/10.1007/s00253-007-1220-5

    Article  CAS  Google Scholar 

  • Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35(5):73. https://doi.org/10.1007/s11274-019-2647-4

    Article  CAS  Google Scholar 

  • Procópio L (2020a) The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 42(3):341–356. https://doi.org/10.1007/s10529-019-02789-w

    Article  CAS  Google Scholar 

  • Procópio L (2020b) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104(14):6397–6411. https://doi.org/10.1007/s00253-020-10688-8

    Article  CAS  Google Scholar 

  • Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85(4):1175–1188. https://doi.org/10.1007/s00253-009-2289-9

    Article  CAS  Google Scholar 

  • Rezaei Somee M, Shavandi M, Dastgheib SMM, Amoozegar MA (2018) Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil. 3 Biotech 8(5):229. https://doi.org/10.1007/s13205-018-1261-8

    Article  Google Scholar 

  • Rusch B, Genin JMR, Ruby C, Abdelmoula M, Bonville P (2012) Mössbauer study of magnetism in FeII-III (oxy-)hydroxycarbonate green rusts: ferrimagnetism of FeII-III hydroxycarbonate. Hyperfine Interact 187:1093–1098

    Google Scholar 

  • Salgaonkar BB, Mani K, Nair A, Gangadharan S, Braganca JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Prot 4(2):98–107. https://doi.org/10.1007/s12602-012-9097-8

    Article  CAS  Google Scholar 

  • Singh G (2009) Corrosion inhibitors. Corros Rev 27:367–416

    Article  Google Scholar 

  • Song Y, Jiang G, Chen Y, Zhao P, Tian Y (2017) Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci Rep 7(1):6865. https://doi.org/10.1038/s41598-017-07245-1

    Article  CAS  Google Scholar 

  • Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  CAS  Google Scholar 

  • Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G (2007) Methylohalomonas lacus gen. nov, sp. nov. and Methylonatrum kenyense gen. nov, sp. nov, methylotrophic gammaproteobacteria from hypersaline lakes. Int J Syst Evol Microbiol 57(Pt12):2762–2769. https://doi.org/10.1099/ijs.0.64955-0

    Article  CAS  Google Scholar 

  • Spring S, Nolan M, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S et al (2010) Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)). Stand Genomic Sci 2(1):38–48. https://doi.org/10.4056/sigs.581048

    Article  Google Scholar 

  • Sun W, Li J, Jiang L, Sun Z, Fu M, Peng X (2015) Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl Microbiol Biotechnol 99(20):8751–8764. https://doi.org/10.1007/s00253-015-6748-1

    Article  CAS  Google Scholar 

  • Syakti AD, Lestari P, Simanora S, Sari LK, Lestari F, Idris F, Agustiadi T, Akhlus S, Hidayati NV, Riyanti (2019) Culturable hydrocarbonoclastic marine bacterial isolates from Indonesian seawater in the Lombok Strait and Indian Ocean. Heliyon 5(5):e01594. https://doi.org/10.1016/j.heliyon.2019.e01594

    Article  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an incontaminated hypersaline pond (Camarque, France). Extremophiles 14:225–231. https://doi.org/10.1007/s00792-010-0301-z

    Article  CAS  Google Scholar 

  • Tebo BM, Ghiorse WC, Van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(h) oxidation from molecular genetic and biochemical studies. Rev Mineral 35:259–266

    Google Scholar 

  • Ussher SJ, Achterberg EP, Worsfold PJ (2004) Marine biogeochemistry of iron. Environ Chem 1:67–80

    Article  CAS  Google Scholar 

  • Vera-Gargallo B, Ventosa A (2018) Metagenomic insights into the phylogenetic and metabolic diversity of the prokaryotic community dwelling in hypersaline soils from the Odiel Saltmarshes (SW Spain). Genes 9(3):E152. https://doi.org/10.3390/genes9030152

    Article  CAS  Google Scholar 

  • Vera-Gargallo B, Chowdhury TR, Brown J, Fansler SJ, Durán-Viseras A, Sánchez-Porro C, Bailey VL, Jansson JK, Ventosa A (2019) Spatial distribution of prokaryotic communities in hypersaline soils. Sci Rep 9(1):1769. https://doi.org/10.1038/s41598-018-38339-z

    Article  CAS  Google Scholar 

  • Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N (2016) Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol 82(8):2545–2554. https://doi.org/10.1128/AEM.03842-15

    Article  CAS  Google Scholar 

  • Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J 11(9):2141–2154. https://doi.org/10.1038/ismej.2017.78

    Article  CAS  Google Scholar 

  • Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7(10):1655–1666

    Article  CAS  Google Scholar 

  • Wan H, Song D, Zhang D, Du C, Xu D, Liu Z, Ding Li X (2018) Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 121:18–26. https://doi.org/10.1016/j.bioelechem

    Article  CAS  Google Scholar 

  • Wan H, Song D, Du C, Liu Z, Li X (2019) Effect of alternating current and Bacillus cereus on the stress corrosion behavior and mechanism of X80 steel in a Beijing soil solution. Bioelectrochemistry 27:49–58. https://doi.org/10.1016/j.bioelechem.2019.01.006

    Article  CAS  Google Scholar 

  • Wang Y, Qian P-Y, Field D (2009) Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE 4 (10):e7401

  • Xie K, Deng Y, Zhang S, Zhang W, Liu J, Xie Y, Zhang X, Huang H (2017) Prokaryotic community distribution along an ecological gradient of salinity in surface and subsurface saline soils. Sci Rep 7(1):13332. https://doi.org/10.1038/s41598-017-13608-5

    Article  CAS  Google Scholar 

  • Youssef NH, Ashlock-Savage KN, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78(5):1332–1344. https://doi.org/10.1128/AEM.07420-11

    Article  CAS  Google Scholar 

  • Zhao S, Liu JJ, Banerjee S, Zhou N, Zhao ZY, Zhang K, Tian CY (2018) Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Sci Rep 8(1):4550. https://doi.org/10.1038/s41598-018-22788-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Luciano Procópio: project design, field sampling, laboratory analysis, writing review, and editing.

Corresponding author

Correspondence to Luciano Procópio.

Ethics declarations

Conflict of interest and ethical approval

The author declares that there are no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ Sci Pollut Res 28, 26975–26989 (2021). https://doi.org/10.1007/s11356-021-12544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12544-2

Keywords

Navigation