Skip to main content

Advertisement

Log in

Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of crude oil and chemical dispersant was evaluated over planktonic bacteria and biofilms grown on API 5L steel surfaces in microcosm systems. Three conditions were simulated, an untreated marine environment and a marine environment with the presence of crude oil and a containing crude oil and chemical dispersant. The results of coupon corrosion rates indicated that in the oil microcosm, there was a high corrosion rate when compared with the other two systems. Analysis of bacterial communities by 16S rRNA gene sequencing described a clear difference between the different treatments. In plankton communities, the Bacilli and Gammaproteobacteria classes were the most present in numbers of operational taxonomic unit (OTUs). The Vibrionales, Oceanospirillales, and Alteromonadales orders were predominant in the treatment with crude oil, whereas in the microcosm containing oil and chemical dispersant, mainly members of Bacillales order were detected. In the communities analyzed from biofilms attached to the coupons, the most preponderant class was Alphaproteobacteria, followed by Gammaproteobacteria. In the control microcosm, there was a prevalence of the orders Rhodobacterales, Aeromonadales, and Alteromonadales, whereas in the dispersed oil and oil systems, the members of the order Rhodobacterales were present in a larger number of OTUs. These results demonstrate how the presence of a chemical dispersant and oil influence the corrosion rate and bacterial community structures present in the water column and biofilms grown on API 5L steel surfaces in a marine environment.

Key points

Evaluation of the effects of oil and chemical surfactants on the corrosion of API 5L.

Changes in microbial communities do not present corrosive biofilm on API 5L coupons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appolinario LR, Tschoeke D, Paixão RVS, Venas T, Calegario G, Leomil L, Silva BS, Thompson CC, Thompson FL (2019) Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean. Environ Pollut 249:295–304

    CAS  PubMed  Google Scholar 

  • ASTM G1-03 (2017) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM International, West Conshohocken

    Google Scholar 

  • Bagi A, Pampanin DM, Brakstad OG, Kommedal R (2013) Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach. Mar Environ Res 89:83–90

    CAS  PubMed  Google Scholar 

  • Bai H, Wang Y, Ma Y, Zhang Q, Zhang N (2018) Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials 11:E1765

    PubMed  Google Scholar 

  • Beech IB, Sunner JA (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 5:181–186

    Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8:157–168

    CAS  PubMed  Google Scholar 

  • Bergstrand K, Mayer B (2017) Transformative environmental threats: behavioral and attitudinal change five years after the Deepwater horizon oil spill. Environ Sociol 3:348–358

    PubMed  PubMed Central  Google Scholar 

  • Bhosle N, Suci PA, Baty AM, Weiner RM, Geesey GG (1998) Influence of divalent cations and pH on adsorption of a bacterial polysaccharide adhesin. J Colloid Interface Sci 205:89–96

    CAS  PubMed  Google Scholar 

  • Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I (2017) Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol 8:99

    PubMed  PubMed Central  Google Scholar 

  • Brakstad OG, Farooq U, Ribicic D, Netzer R (2018) Dispersibility and biotransformation of oils with different properties in seawater. Chemosphere 191:44–53

    CAS  PubMed  Google Scholar 

  • Brauer JI, Makama Z, Bonifay V, Aydin E, Kaufman ED, Beech IB, Sunner J (2015) Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration. Biointerphases 10:019003

    PubMed  Google Scholar 

  • Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    CAS  PubMed  Google Scholar 

  • Chen S, Deng H, Liu G, Zhang D (2019) Corrosion of Q235 carbon steel in seawater containing Mariprofundus ferrooxydans and Thalassospira sp. Front Microbiol 10:936

    PubMed  PubMed Central  Google Scholar 

  • Chinalia FA, Andrade MB, Vale TOD, Santos SCD, Moura-Costa LF, Almeida PF (2019) The potential impact of using a surfactant and an alcoholic co-surfactant on SRB activity during EOR. Environ Technol 40:2100–2106

    CAS  PubMed  Google Scholar 

  • Cluff MA, Hartsock A, MacRae JD, Carter K, Mouser PJ (2014) Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environ Sci Technol 48:6508–6517

    CAS  PubMed  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21. https://doi.org/10.1093/jpe/rtr044

    Article  Google Scholar 

  • Cord-Ruwisch R (2000) Microbially influenced corrosion of steel. In: Lovley D (ed) Environmental microbe-metal interactions. ASM Press, Washington, pp 159–173

    Google Scholar 

  • Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138

    CAS  PubMed  Google Scholar 

  • Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    CAS  PubMed  Google Scholar 

  • Dashti N, Ali N, Salamah S, Khanafer M, Al-Shamy G, Al-Awadhi H, Radwan SS (2019) Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation. Microbiologyopen 8:e00630

    PubMed  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno Y, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater horizon oil spill in the gulf of Mexico. Environ Sci Technol 47:10860–10867

    CAS  PubMed  Google Scholar 

  • Elumalai P, Parthipan P, Narenkumar J, Anandakumar B, Madhavan J, Oh BT, Rajasekar A (2019) Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3. Biotech 9:79

    Google Scholar 

  • Flood BE, Leprich D, Bailey JV (2018) Complete genome sequence of Celeribacter baekdonensis strain LH4, a thiosulfate-oxidizing Alphaproteobacterial isolate from Gulf of Mexico continental slope sediments. Genome Announc 6:e00434–e00418

    PubMed  PubMed Central  Google Scholar 

  • Gao X, Shao Y, Xie L, Wang Y, Yang D (2019) Prediction of corrosive fatigue life of submarine pipelines of API 5L X56 steel materials. Materials (Basel) 12:1031. https://doi.org/10.3390/ma12071031

    Article  CAS  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. Nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    CAS  PubMed  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdan LJ, Fulmer PA (2011) Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater horizon spill. Aquat Microb Ecol 63:101–109

    Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electro 4(1) 9pp

  • Ilman MN, Kusmono H (2014) Analysis of internal corrosion in subsea oil pipeline. Case studies in. Eng Fail Anal 2:1–8. https://doi.org/10.1016/j.csefa.2013.12.003

    Article  Google Scholar 

  • Jami M, Lai Q, Ghanbari M, Moghadam MS, Kneifel W, Domig KJ (2016) Celeribacter persicus sp. nov., a polycyclic-aromatic-hydrocarbon-degrading bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 66:1875–1880

    CAS  PubMed  Google Scholar 

  • Jurelevicius D, Alvarez VM, Marques JM, de Sousa Lima LR, Dias A, Seldin L (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl Environ Microbiol 79:5927–5935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilbane JJ 2nd, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:137

    PubMed  Google Scholar 

  • King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the Deepwater horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci 7:377–401

    CAS  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112:14900–14905. https://doi.org/10.1073/pnas.1507380112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch GH, Varney J, Thompson NO, Moghissi O, Gould M, Payer JH (2016) NACE international impact report, Houston

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the Deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30:823–835

    PubMed  Google Scholar 

  • Li XX, Liu JF, Zhou L, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2017) Diversity and composition of sulfate-reducing microbial communities based on genomic DNA and RNA transcription in production water of high temperature and corrosive oil reservoir. Front Microbiol 8:1011

    PubMed  PubMed Central  Google Scholar 

  • López MA, Zavala-Díaz de la Serna FJ, Jan-Roblero J, Romero JM, Hernández-Rodríguez C (2006) Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiol Ecol 58:145–154

    PubMed  Google Scholar 

  • Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery . Bioremediat J 23(4):302–310

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of Bacteria and Archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

    Article  CAS  PubMed  Google Scholar 

  • Mohanram R, Jagtap C, Kumar P (2016) Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor. Mar Pollut Bull 105:131–138

    CAS  PubMed  Google Scholar 

  • Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200:1447–1456

    CAS  PubMed  Google Scholar 

  • Mugge RL, Lee JS, Brown TT, Hamdan LJ (2019) Marine biofilm bacterial community response and carbon steel loss following Deepwater horizon spill contaminant exposure. Biofouling 35:870–882

    CAS  PubMed  Google Scholar 

  • Mumford AC, Adaktylou IJ, Emerson D (2016) Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol 82(22):6799–6807

    CAS  PubMed  PubMed Central  Google Scholar 

  • NACE RP-07-75 (2005) Standard recommended practice, preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. NACE International, Houston

    Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001) Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol Prog 17:852–859

    CAS  PubMed  Google Scholar 

  • Neria-González I, Wang ET, Ramírez F, Romero JM, Hernández-Rodríguez C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12:1221–1233

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35:73

    PubMed  Google Scholar 

  • Procópio L (2020) The era of 'omics' technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 42:341–356. https://doi.org/10.1007/s10529-019-02789-w

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85:1175–1188

    CAS  PubMed  Google Scholar 

  • Ramírez GA, Hoffman CL, Lee MD, Lesniewski RA, Barco RA, Garber A, Toner BM, Wheat CG, Edwards KJ, Orcutt BN (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679

    PubMed  PubMed Central  Google Scholar 

  • Rempel CL, Evitts RW, Nemati M (2006) Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir. J Ind Microbiol Biotechnol 33:878–886

    CAS  PubMed  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salerno JL, Little B, Lee J, Hamdan LJ (2018) Exposure to crude oil and chemical dispersant may impact marine microbial biofilm composition and steel corrosion. Front Mar Sci 5:196

    Google Scholar 

  • Silva R, de Almeida DM, Cabral BCA, Dias VHG, Mello ICTE, Ürményi TP, Woerner AE, Neto RSM, Budowle B, Nassar CAG (2018) Microbial enrichment and gene functional categories revealed on the walls of a spent fuel pool of a nuclear power plant. PLoS One 13:e0205228

    PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS (USA) 101:11030–11035

    CAS  Google Scholar 

  • Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC, Conmy R, Santo Domingo JW (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microbiol 83:e03462–e03416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresour Technol 102:772–778

    CAS  PubMed  Google Scholar 

  • Tian X, Wang X, Peng S, Wang Z, Zhou R, Tian H (2018) Isolation, screening, and crude oil degradation characteristics of hydrocarbons-degrading bacteria for treatment of oily wastewater. Water Sci Technol 78:2626–2638

    CAS  PubMed  Google Scholar 

  • Tripathi L, Irorere VU, Marchant R, Banat IM (2018) Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 40:1441–1457. https://doi.org/10.1007/s10529-018-2602-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A, Faimali M, Vandamme P (2009) Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 59:811–817

    CAS  PubMed  Google Scholar 

  • Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N (2016) Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol 82:2545–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J 11:2141–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villela HDM, Peixoto RS, Soriano AU, Carmo FL (2019) Microbial bioremediation of oil contaminated seawater: a survey of patent deposits and the characterization of the top genera applied. Sci Total Environ 666:743–758

    CAS  PubMed  Google Scholar 

  • Wan H, Song D, Zhang D, Du C, Xu D, Liu Z, Ding LX (2018) Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 121:18–26

    CAS  PubMed  Google Scholar 

  • Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401

    PubMed  PubMed Central  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ma Y, Duan J, Li X, Wang J, Hou B (2019) Analysis of marine microbial communities colonizing various metallic materials and rust layers. Biofouling 35:429–442

    CAS  PubMed  Google Scholar 

Download references

Authors’ contribution statement

LP was the intellectual mentor for this study. LP was responsible for the design of the materials, microcosms, as well as for the conduct of the methodology, with the exception of the sequencing, carried out by the company Neoprospect. In addition, data curation, writing, revision, and editing were also conducted by author LP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Procópio.

Ethics declarations

Ethical statement

This article does not contain any studies with human or animal participants performed by any of the authors.

Conflict of interest

The author declares that he has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, L. Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104, 6397–6411 (2020). https://doi.org/10.1007/s00253-020-10688-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10688-8

Keywords

Navigation