Skip to main content
Log in

New Findings on Aromatic Compounds’ Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The study of the aromatic compounds’ degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds’ degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woolard CR, Irvine RL (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29:1159–1168. https://doi.org/10.1016/0043-1354(94)00239-4

    Article  CAS  Google Scholar 

  2. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92. https://doi.org/10.1159/000121323

    Article  CAS  PubMed  Google Scholar 

  3. Bonfá MRL, Grossman MJ, Piubeli F et al (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709. https://doi.org/10.1007/s10532-012-9617-y

    Article  CAS  PubMed  Google Scholar 

  4. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilisand Pseudomonas aeruginosastrains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345. https://doi.org/10.1016/j.biortech.2006.05.032

    Article  CAS  PubMed  Google Scholar 

  5. Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379. https://doi.org/10.1016/j.copbio.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Parales RE (2004) Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl Environ Microbiol 70:285–292. https://doi.org/10.1128/AEM.70.1.285-292.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. García MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivoranssp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728. https://doi.org/10.1099/ijs.0.63114-0

    Article  CAS  PubMed  Google Scholar 

  8. Zhuang X, Han Z, Bai Z et al (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126. https://doi.org/10.1016/j.envpol.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Wang X, Li H et al (2014) International biodeterioration & biodegradation treatment of high salinity phenol-laden wastewater using a sequencing batch reactor containing halophilic bacterial community. Int Biodeterior Biodegradation 93:138–144. https://doi.org/10.1016/j.ibiod.2014.04.010

    Article  CAS  Google Scholar 

  10. Gargouri B, Mhiri N, Karray F et al (2015) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int. 2015

  11. Kumar BL, Gopal DVRS. (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5:867–876

    Article  Google Scholar 

  12. Vasconcellos SP, Dellagnezze BM, Wieland A et al (2011) The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir. World J Microbiol Biotechnol 27:1513–1518. https://doi.org/10.1007/s11274-010-0581-6

    Article  CAS  PubMed  Google Scholar 

  13. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. https://doi.org/10.4061/2011/941810

    Article  CAS  PubMed  Google Scholar 

  14. Nisenbaum M, Sendra GH, Gilbert GAC et al (2013) Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci 25:613–625. https://doi.org/10.1016/S1001-0742(12)60020-5

    Article  CAS  Google Scholar 

  15. Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37:4397–4402. https://doi.org/10.1021/es0341844

    Article  CAS  PubMed  Google Scholar 

  16. Kaye JZ, Márquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: Halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511. https://doi.org/10.1099/ijs.0.02799-0

    Article  CAS  PubMed  Google Scholar 

  17. Oie CSI, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41:1235–1242. https://doi.org/10.1016/j.watres.2006.12.029

    Article  CAS  PubMed  Google Scholar 

  18. Piubeli F, Grossman MJ, Fantinatti-Garboggini F, Durrant LR (2012) Identification and characterization of aromatic degrading Halomonas in hypersaline produced water and COD reduction by bioremediation by the indigenous microbial population using nutrient addition. Chem Eng Trans 27:385–390. https://doi.org/10.3303/1227065

    Article  Google Scholar 

  19. Haddadi A, Shavandi M (2013) Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int Biodeterior Biodegrad 85:29–34. https://doi.org/10.1016/j.ibiod.2013.06.005

    Article  CAS  Google Scholar 

  20. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16. https://doi.org/10.3389/fmicb.2014.00173

    Article  Google Scholar 

  21. Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794. https://doi.org/10.1111/j.1365-2672.2009.04251.x

    Article  CAS  PubMed  Google Scholar 

  22. Dastgheib SMM, Amoozegar MA, Khajeh K et al (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798. https://doi.org/10.1007/s00253-011-3706-4

    Article  CAS  PubMed  Google Scholar 

  23. De Lourdes Moreno M, Sánchez-Porro C, Piubeli F et al (2011) Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PLoS ONE 6:. https://doi.org/10.1371/journal.pone.0021049

  24. D’Ippólito S, de Castro RE, Herrera Seitz K (2011) Chemotactic responses to gas oil of Halomonas spp. strains isolated from saline environments in Argentina. Rev Argent Microbiol 43:107–110. https://doi.org/10.1590/S0325-75412011000200007

    Article  PubMed  Google Scholar 

  25. Gasperotti AF, Studdert CA, Revale S, Herrera Seitz MK (2015) Draft genome sequence of Halomonassp. KHS3, a polyaromatic hydrocarbon-chemotactic strain. Genome Announc 3:e00020-15. https://doi.org/10.1128/genomeA.00020-15

    Article  PubMed  PubMed Central  Google Scholar 

  26. García MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109. https://doi.org/10.1016/j.femsec.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Murialdo SE, Fenoglio R, Haure PM, González JF (2003) Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA 29:457–463. https://doi.org/10.4314/wsa.v29i4.5053

    Article  CAS  Google Scholar 

  28. Pedetta A, Pouyte K, Herrera Seitz MK et al (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeterior Biodegrad 84:161–167. https://doi.org/10.1016/j.ibiod.2012.04.018

    Article  CAS  Google Scholar 

  29. Arulazhagan P, Vasudevan N, Yeom IT (2010) Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Technol 7:639–652. https://doi.org/10.1007/BF03326174

    Article  CAS  Google Scholar 

  30. Nichols NN, Harwood CS (1995) Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida-ketoadipate pathway. J Bacteriol 177:7033–7040

    Article  CAS  Google Scholar 

  31. Kim D, Kim SW, Choi KY et al (2008) Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol Lett 280:235–241. https://doi.org/10.1111/j.1574-6968.2008.01067.x

    Article  CAS  PubMed  Google Scholar 

  32. Blanch H, Clark D (1996) Biochemical engineering. Marcel Dekker, New York

    Google Scholar 

  33. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279. https://doi.org/10.1016/0167-7012(91)90064-W

    Article  Google Scholar 

  34. Singleton I (1994) Microbial metabolism of xenobiotics: fundamental and applied research. J Chem Technol Biotechnol 59:9–23

    Article  CAS  Google Scholar 

  35. Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008. https://doi.org/10.1046/j.1462-2920.2003.00507.x

    Article  CAS  PubMed  Google Scholar 

  36. Stanbury P, Whitaker A, Hall SJ (1995) {CHAPTER} 2 - Microbial Growth Kinetics. In: Stanbury PF, Whitaker A, Hall SJ (eds) Principles of fermentation technology, Second Edition. Second Edi. Pergamon, Amsterdam, pp 13–33

    Chapter  Google Scholar 

  37. Harwood CS, Parales RE (1996) The b-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. https://doi.org/10.1146/annurev.micro.50.1.553

    Article  CAS  PubMed  Google Scholar 

  38. Eulberg D, Lakner S, Golovleva LA, Schlömann M (1998) Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. J Bacteriol 180:1072–1081

    Article  CAS  Google Scholar 

  39. Romero-Steiner S, Parales RE, Harwood CS, Houghton JE (1994) Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate. J Bacteriol 176:5771–5779

    Article  CAS  Google Scholar 

  40. Ottow JCG, Zolg W (1974) Improved procedure and colorimetric test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Can J Microbiol 20:1059–1061. https://doi.org/10.1139/m74-163

    Article  CAS  PubMed  Google Scholar 

  41. Piubeli F, Grossman MJ, Fantinatti-Garboggini F, Durrant LR (2012) Enhanced reduction of COD and aromatics in petroleum-produced water using indigenous microorganisms and nutrient addition. Int Biodeterior Biodegrad 68:78–84. https://doi.org/10.1016/j.ibiod.2011.11.012

    Article  CAS  Google Scholar 

  42. Dziewit L, Pyzik A, Matlakowska R et al (2013) Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol 13:59. https://doi.org/10.1186/1471-2180-13-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Huang XF, Lu LJ et al (2010) Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion. J Hazard Mater 183:466–473. https://doi.org/10.1016/j.jhazmat.2010.07.047

    Article  CAS  PubMed  Google Scholar 

  44. Fairley DJ, Boyd DR, Sharma ND et al (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 68:6246–6255. https://doi.org/10.1128/AEM.68.12.6246-6255.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Razika B, Abbes B, Messaoud C, Soufi K (2010) Phenol and benzoic acid degradation by Pseudomonas aeruginosa. J Water Resour Prot 2:788–791. https://doi.org/10.4236/jwarp.2010.29092

    Article  CAS  Google Scholar 

  46. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452. https://doi.org/10.1007/BF00307764

    Article  CAS  Google Scholar 

  47. Cuadros-Orellana S, Pohlschroder M, Grossman MJ, Durrant LR (2012) Biodegradation of aromatic compounds by a halophilic archaeon isolated from the Dead Sea. Chem Eng Trans 27:13–18. https://doi.org/10.3303/CET1227003

    Article  Google Scholar 

  48. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105. https://doi.org/10.1038/sj.jim.2900259

    Article  CAS  Google Scholar 

  49. Morán AC (2000) Enhancement of hydrocarbon wastebiodegradation by addition of a biosurfactantfrom Bacillus subtilis O9. Biodegradation 11:65–71. https://doi.org/10.1023/A:1026513312169

    Article  PubMed  Google Scholar 

  50. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795. https://doi.org/10.1128/AEM.68.12.5789-5795.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pirôllo MPS, Mariano AP, Lovaglio RB et al (2008) Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol 105:1484–1490. https://doi.org/10.1111/j.1365-2672.2008.03893.x

    Article  CAS  PubMed  Google Scholar 

  52. Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536. https://doi.org/10.1111/j.1365-2672.2011.05071.x

    Article  CAS  PubMed  Google Scholar 

  53. Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268. https://doi.org/10.1007/BF02438660

    Article  CAS  Google Scholar 

  54. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273. https://doi.org/10.1016/S1369-5274(02)00320-X

    Article  CAS  PubMed  Google Scholar 

  55. Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804. https://doi.org/10.1111/j.1462-2920.2006.01064.x

    Article  CAS  PubMed  Google Scholar 

  56. Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19:1099–1102. https://doi.org/10.1023/A:1018488410102

    Article  CAS  Google Scholar 

  57. Jiménez JI, Miñambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Env Microbiol 4:824–841. https://doi.org/10.1046/j.1462-2920.2002.00370.x

    Article  Google Scholar 

  58. Li D, Yan Y, Ping S et al (2010) Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol 10:36. https://doi.org/10.1186/1471-2180-10-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  Google Scholar 

  60. Sánchez-Porro C, de la Haba RR, Cruz-Hernández N et al (2013) Draft genome of the marine Gammaproteobacterium Halomonas titanicae. Genome Announc 1:e0008313. https://doi.org/10.1128/genomeA.00083-13

    Article  PubMed  Google Scholar 

  61. Obayori OS, Salam LB (2010) Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Sci Res Essays Spec Rev 5:4093–4106

    Google Scholar 

  62. Sutherland JB, Freeman JP, Selby AL et al (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154:260–266. https://doi.org/10.1007/BF00248965

    Article  CAS  PubMed  Google Scholar 

  63. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of Benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345. https://doi.org/10.1128/AEM.70.1.340-345.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gutierrez T, Whitman WB, Huntemann M et al (2015) Genome sequence of Halomonas sp. strain MCTG39a, a hydrocarbon-degrading and exopolymeric substance-producing bacterium. Genome Announc 3:e00793-15

    Article  Google Scholar 

  65. Albano MJ, da Cunha Lana P, Bremec C et al (2013) Macrobenthos and multi-molecular markers as indicators of environmental contamination in a South American port (Mar del Plata, Southwest Atlantic). Mar Pollut Bull 73:102–114. https://doi.org/10.1016/j.marpolbul.2013.05.032

    Article  CAS  PubMed  Google Scholar 

  66. Stanbury PF, Whitaker A, Hall SJ (1995) 9- Aeration and Agitation. In: Stanbury PF, Whitaker A, Hall SJ (eds) Principles of fermentation technology, Second Edition. Second Edi. Pergamon, Amsterdam, pp 243–275

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Mónica Espinosa (Instituto de Análisis FARES TAIE, Division of Environmental Analysis. http://www.farestaie.com) and M. Daniela Villamonte (IIB-CONICET-UNMDP) for HPLC analysis and we thank Jorge Froilán González for his help in improving the text. This research was supported by grants from Comisión de Investigaciones Científicas (CIC, PIT-BA-2016, 1443/16, 1266/15) and Agencia Nacional de Promoción Científica y Tecnológica, Secretaría de Ciencia y Técnica Argentina (PICT 2014-1567 from 10/2015-10/2018), UNMdP (15/G426 ING432/15, 15/G433 ING439/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Corti Monzón.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2018_1497_MOESM1_ESM.pdf

Supplementary material 1 Figure S1. Effect of initial substrate concentration on the maximum biomass concentration. The effect of initial substrate concentration (benzoic acid, BA or 4-hydroxybenzoic acid, 4-HBA) on the maximum biomass concentration (represented as Abs600nm) recorded [66]. (PDF 169 KB)

284_2018_1497_MOESM2_ESM.xls

Supplementary material 2 Table S1. Genes of aromatic compounds degradation present in the genome of Halomonas sp. KHS3. Category, subcategory, subsystem, role and number of coding DNA sequences (CDS) of RAST annotated genes related to aromatic compounds degradation. Note that one gene can be classified in more than one subsystem, thus the total count number of aromatic degradation related genes was 61. When subsystem says none, the gene was found in the not-subsystem gene group of RAST annotation system. The whole-genome shotgun project is deposited at DDBJ/EMBL/GenBank under the accession no. JWHY00000000 [25]. (XLS 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corti Monzón, G., Nisenbaum, M., Herrera Seitz, M.K. et al. New Findings on Aromatic Compounds’ Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3. Curr Microbiol 75, 1108–1118 (2018). https://doi.org/10.1007/s00284-018-1497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1497-x

Navigation