Skip to main content
Log in

Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3 % v/v), naphthalene (3 % v/v), and pyrene (3 % v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25 % (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470

    Article  CAS  PubMed  Google Scholar 

  • Ariech M, Guechi A (2015) Assessment of four different methods for selecting biosurfactant producing extremely halophilic bacteria. Afr J Biotechnol 14(21):1764–1772

    Article  Google Scholar 

  • Arulazhagan P, Vasudevan N (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58(2):256–262

    Article  CAS  PubMed  Google Scholar 

  • Ashok T, Saxena S, Musarrat J (1995) Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett Appl Microbiol 21:246–248

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Berlendis S, Cayol JL, Verhe F, Laveau S, Tholozan JC, Ollivier B, Auria R (2010) First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Appl Biochem Biotechnol 160:1992–1999

    Article  CAS  PubMed  Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. App Environ Microbiol 69:3280–3287

    Article  CAS  Google Scholar 

  • Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  PubMed  Google Scholar 

  • Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709

    Article  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FA, do Carmo R, Peralba M, Bento FM (2011) Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour Technol 102(23):11003–11010

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. App Environ Microbiol 53:224–229

    CAS  Google Scholar 

  • Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Tech 49:326–346

    Article  Google Scholar 

  • Cuadros-Orellana S, Pohlschroderb M, Grossmanc MJ, Durrant LR (2012) Biodegradation of aromatic compounds by a halophilic archaeon isolated from the Dead Sea. Chem Eng Trans 27:13–18

    Google Scholar 

  • Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276 

    Article  Google Scholar 

  • Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. Strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78:7309–7316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalvi S, Nicholsona C, Najarc F, Roec BA, Canaanb P, Hartsonb SD, Fathepurea BZ (2014) Isolation of a novel Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds at high salinity. Appl Environ Microbiol 80(21):6664–6676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das M, Das SK, Mukherjee RK (1998) Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkenes and sugars. Bioresour Technol 63:231–235

    Article  CAS  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  PubMed  Google Scholar 

  • Denger K, Schink B (1995) New halo and thermotolerant fermenting bacteria producing surface-active compounds. App Microbiol Biotechnol 44:161–166

    Article  CAS  Google Scholar 

  • Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675

    Article  CAS  PubMed  Google Scholar 

  • Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erdoğmuş SF, Mutlu B, Korcan SE, Guven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamalti Saltern, Turkey. Water Air Soil Pollut 224:1449

    Article  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16

    Article  Google Scholar 

  • Fu W, Oriel P (1999) Degradation of 3-phenylpropionic acid by Haloferaxsp. D1227. Extremophiles 3:45–53

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L (2013) Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie Van Leeuwenhoek 103:485–491

    Article  CAS  PubMed  Google Scholar 

  • Garcia MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109

    Article  CAS  PubMed  Google Scholar 

  • Gibbs GW (1997) Estimating residential polycyclic aromatic hydrocarbon (PAH) related lung cancer risk using occupational data. Ann Occup Hyg 41:49–53

    Article  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Marchlewicz A, Wojcieszynska D (2014) Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electron J Biotechnol 17:83–88

    Article  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  • Hassan HA, Rizk NMH, Hefnawy MA, Awad AM (2012) Isolation and characterization of halophilic aromatic and chloroaromatic degrader from Wadi El-Natrun Soda lakes. Life Sci J9:1565–1570

    Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Production of biosurfactants and their importance. Curr Sci 77:116–125

    CAS  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactant. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Ferrioune I, Khemili S, Lenchi N, Akmouci-Toumi S, Bouanane-Darenfed NA, Djelali ND (2013) Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17:981–993

    Article  CAS  PubMed  Google Scholar 

  • Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285:198–204

    Article  CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  Google Scholar 

  • Mahiuddin MD, Fakhruddin ANM, Al-Mahin A (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiology, 2012, ID741820. http://www.hindawi.com/journals/isrn/2012/741820/

  • Marini M, Frapiccini E (2013) Persistence of polycyclic aromatic hydrocarbons in sediments in the deeper area of the Northern Adriatic Sea (Mediterranean Sea). Chemosphere 90:1839–1846

    Article  CAS  PubMed  Google Scholar 

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Means JC (1995) Influence of salinity upon sediment–water partitioning ofaromatic hydrocarbons. Mar Chem 51:3–16

    Article  CAS  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAH in the environment. Environ Sci Technol 26:1278–1284

    Article  CAS  Google Scholar 

  • Meyer DD, Santestevan NA, Bücker F, Salamoni SP, Andreazza R, De Oliveira Camargo FA, Bento FM (2012) Capability of a selected bacterial consortium for degrading diesel/biodiesel blends (B20): enzyme and biosurfactant production. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(12):1776–1784

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh SN, Pande V (2014) Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol 164:299–308

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Rodrigue RJ, Lopez-Garriga H, Vreeland A, Oren A, Ventosa A, Kamekura M (2000) Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. IntJSystEvolMicrobiol 50:1065–1071

    Google Scholar 

  • Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov. sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standarts for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  • Ottow JCG, Zolg W (1974) Improved procedure and colorimetrics test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Canadian J Microbiol 20:1059–1061

    Article  CAS  Google Scholar 

  • Ozcan B, Cokmus C, Coleri A, Caliskan M (2006) Characterization of extremely halophilic archaea isolated from saline environment in different parts of Turkey. Microbiol 75:739–748

    Article  CAS  Google Scholar 

  • Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36:105–110

    Article  CAS  PubMed  Google Scholar 

  • Pallas NR, Pethica BA (1983) The surface tension of water. Colloids Surf 6:221–227

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interfac 138:24–58

    Article  CAS  Google Scholar 

  • Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology, Springer-Verlag, Berlin, pp 799–837

  • Plotnikova EG, Alyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish E, Demakov VA, Boronin AM (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiol 70:51–58

    Article  CAS  Google Scholar 

  • Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Ya Lysanskaya V, Demakov VA (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russian J Ecol 42:502–509

    Article  CAS  Google Scholar 

  • Purohit MK, Raval VH, Singh PS (2014) Haloalkaliphilic bacteria: molecular diversity and biotechnological applications. Geomicrobiol Biogeoch Soil Biol 39:61–79

    Article  CAS  Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microor- ganisms. In: Beek B (ed) The Handbook of Environmental Chemistry. Vol. 2 Part K Biodegradation and Persistance, Springer-Verlag, Berlin; Heidelberg, pp 1–140

  • Sarafin Y, Donio MB, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21(6):511–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva AS, Jacques RJS, Andreazza R, Bento FM, Roesch LFW, Camargo FAO (2012) Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum. Braz J Microbiol 44(1):291–297

    Article  Google Scholar 

  • Song YJ (2009) Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Korean J Microbiol Biotech 37:333–339

    CAS  Google Scholar 

  • Stanier RY, Ingraham JL (1954) Protocatechuic acid oxidase. J Biol Chem 210:799–808

    CAS  PubMed  Google Scholar 

  • Stanier RY, Ornston LN (1973) The beta-ketoadipate pathway. Adv Microb Physiol 9:89–151

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon degrading extremely halophilic Archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  CAS  PubMed  Google Scholar 

  • van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed Central  PubMed  Google Scholar 

  • Van Hamme JD, Singh AM, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 6:503–549

    Article  Google Scholar 

  • Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  PubMed  Google Scholar 

  • Wild SR, Jones KC (1993) Biological and abiotic losses of polynuclear aromatichydrocarbons (PAHs) from soils freshly amended with sewage sludge. EnvironToxicol Chem 12:5–12

    CAS  Google Scholar 

  • Zhang Y, Miller RM (1995) Effects of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Environ Microbiol 61:2247–2251

    CAS  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professors Khemili Amina and Talbi Zakaria for their careful reading and advancing and CNEPRU for the support to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Khemili-Talbi.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemili-Talbi, S., Kebbouche-Gana, S., Akmoussi-Toumi, S. et al. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19, 1109–1120 (2015). https://doi.org/10.1007/s00792-015-0783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0783-9

Keywords

Navigation