Skip to main content

Advertisement

Log in

The effect of gamma radiation on the lipid profile of irradiated red blood cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

An investigation into the effects of irradiation and of the storage time on aging and quality are a relevant issue to ensure the safety and the efficiency of irradiation in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). In this work, the biochemical properties and alterations presented by erythrocyte membranes, up to 28-days post-irradiation, with a dose of 25 Gy, were studied as a function of storage and post-irradiation time. There was a considerable variation in the total of phospholipid content, when comparing the control and irradiated samples, mostly from the third day onwards; and at the same time, the effect occurred as a function on the storage time of blood bags. The levels of total cholesterol decreased 3–9 days after irradiation. TBARS levels were increased after irradiation and 7 days of storage, but no increment of catalase activity was observed after the irradiation. Furthermore, the protein profile was maintained throughout the irradiation and storage time, until the 21st day, with the presence of a protein fragmentation band of around 28 kDa on the 28th day. In conclusion, although gamma irradiation is the main agent for the prevention of TA-GVHD, a better understanding of the physical and biochemical properties of erythrocytes are necessary to better assess their viability, and to be able to issue more secure recommendations on the shelf life of blood bags, and the safe use of the irradiated red cells therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pelszynski MM, Moroff G, Luban NL, Taylor BJ, Quinones RR (1994) Effect of gamma irradiation of red blood cell units on T cell inactivation as assessed by limiting dilution analysis: implications for preventing transfusion-associated graft-versus-host disease. Blood 83(6):1683–1689

    PubMed  CAS  Google Scholar 

  2. Anderson K (2003) Broadening the spectrum of patient groups at risk for transfusion-associated GVHD: implications for universal irradiation of cellular blood components. Transfusion 43(12):1652–1654, doi:631 [pii]

    Article  PubMed  Google Scholar 

  3. Janatpour K, Denning L, Nelson K, Betlach B, Mackenzie M, Holland P (2005) Comparison of x-ray vs. gamma irradiation of CPDA-1 red cells. Vox Sang 89(4):215–219. doi:10.1111/j.1423-0410.2005.00699.x

    Article  PubMed  CAS  Google Scholar 

  4. Góes EG, Ottoboni MA, Palma PV, Morais FR, Pelá CA, Borges JC, Covas DT (2008) Quality control of blood irradiation with a teletherapy unit: damage to stored red blood cells after cobalt-60 gamma irradiation. Transfusion 48(2):332–340. doi:10.1111/j.1537-2995.2007.01527.x

    PubMed  Google Scholar 

  5. Billingham RE (1966) The biology of graft-versus-host reactions. Harvey Lect 62:21–78

    PubMed  Google Scholar 

  6. Moroff G, Leitman SF, Luban NL (1997) Principles of blood irradiation, dose validation, and quality control. Transfusion 37(10):1084–1092

    Article  PubMed  CAS  Google Scholar 

  7. Zimmermann R, Schoetz AM, Frisch A, Hauck B, Weiss D, Strobel J, Eckstein R (2011) Influence of late irradiation on the in vitro RBC storage variables of leucoreduced RBCs in SAGM additive solution. Vox Sang 100(3):279–284. doi:10.1111/j.1423-0410.2010.01410.x

    Article  PubMed  CAS  Google Scholar 

  8. Menitove JE (1999) Standards for blood banks and transfusion services, 19ªth edn. Bethesda, American Association of Blood Banks

    Google Scholar 

  9. Moreira LM, Santiago PS, de Almeida EV, Tabak M (2008) Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (HPS): effects of oligomeric dissociation. Colloids Surf B: Biointerfaces 61(2):153–163. doi:10.1016/j.colsurfb.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  10. de Oliveira GC, Maia GA, Cortes VF, Santos Hde L, Moreira LM, Barbosa LA (2013) The effect of gamma-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation. Ann Hematol 92(7):899–906. doi:10.1007/s00277-013-1719-z

    Article  PubMed  CAS  Google Scholar 

  11. Drobyski W, Thibodeau S, Truitt RL, Baxter-Lowe LA, Gorski J, Jenkins R, Gottschall J, Ash RC (1989) Third-party-mediated graft rejection and graft-versus-host disease after T cell-depleted bone marrow transplantation, as demonstrated by hypervariable DNA probes and HLA-DR polymorphism. Blood 74(6):2285–2294

    PubMed  CAS  Google Scholar 

  12. Cicha I, Suzuki Y, Tateishi N, Shiba M, Muraoka M, Tadokoro K, Maeda N (2000) Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: rheological evaluation and susceptibility to oxidative stress. Vox Sang 79(2):75–82

    Article  PubMed  CAS  Google Scholar 

  13. Spiteller P, Spiteller G (1998) Strong dependence of the lipid peroxidation product spectrum whether Fe2+/O2 or Fe3+/O2 is used as oxidant. Biochim Biophys Acta 1392(1):23–40

    Article  PubMed  CAS  Google Scholar 

  14. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44(10):1098–1124. doi:10.3109/10715762.2010.498477

    Article  PubMed  CAS  Google Scholar 

  15. Tavazzi B, Di Pierro D, Amorini AM, Fazzina G, Tuttobene M, Giardina B, Lazzarino G (2000) Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 267(3):684–689

    Article  PubMed  CAS  Google Scholar 

  16. Maturu P, Vaddi DR, Pannuru P, Nallanchakravarthula V (2010) Alterations in erythrocyte membrane fluidity and Na+/K + −ATPase activity in chronic alcoholics. Mol Cell Biochem 339(1–2):35–42. doi:10.1007/s11010-009-0367-z

    Article  PubMed  CAS  Google Scholar 

  17. Leitner GC, Neuhauser M, Weigel G, Kurze S, Fischer MB, Höcker P (2001) Altered intracellular purine nucleotides in gamma-irradiated red blood cell concentrates. Vox Sang 81(2):113–118

    Article  PubMed  CAS  Google Scholar 

  18. Rega AF, Garrahan PJ, Barrabin H, Horenstein A, Rossi JP (1979) Cation flux across biomembranes. Academic, New York

    Google Scholar 

  19. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48(2):422–427

    Article  PubMed  CAS  Google Scholar 

  20. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  21. Adams PE (1995) Determination iron content in food by spectrophotometry. Journal of Chemical Education 72(7)

  22. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  23. ROSE HG, OKLANDER M (1965) Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res 6:428–431

    PubMed  CAS  Google Scholar 

  24. Vokurková M, Nováková O, Dobesová Z, Kunes J, Zicha J (2005) Relationships between membrane lipids and ion transport in red blood cells of Dahl rats. Life Sci 77(13):1452–1464. doi:10.1016/j.lfs.2005.03.014

    Article  PubMed  CAS  Google Scholar 

  25. Chen PS, Toribara TY, Warner H (1956) Microdetermination of Phosphorus. Anal Chem 28(11):1756–1758. doi:10.1021/ac60119a033

    Article  CAS  Google Scholar 

  26. Higgins J (1987) Separation and analysis of membrane lipid components. In: Findlay J and Evans W (eds) Biological membranes: a practical approach. IRL Press, Oxford pp.103–107.

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  28. Katyukhin LN, Kazennov AM, Maslova MN, Matskevich YA (1998) Rheologic properties of mammalian erythrocytes: relationship to transport ATPases. Comp Biochem Physiol B Biochem Mol Biol 120(3):493–498

    Article  PubMed  CAS  Google Scholar 

  29. Kim YK, Kwon EH, Kim DH, Won DI, Shin S, Suh JS (2008) Susceptibility of oxidative stress on red blood cells exposed to gamma rays: hemorheological evaluation. Clin Hemorheol Microcirc 40(4):315–324

    PubMed  CAS  Google Scholar 

  30. Rodrigo R, Bächler JP, Araya J, Prat H, Passalacqua W (2007) Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol Cell Biochem 303(1–2):73–81. doi:10.1007/s11010-007-9457-y

    Article  PubMed  CAS  Google Scholar 

  31. Wheeler KP, Whittam R (1970) The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump. J Physiol 207(2):303–328

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Esmann M, Marsh D (2006) Lipid-protein interactions with the Na, K-ATPase. Chem Phys Lipids 141(1–2):94–104. doi:10.1016/j.chemphyslip.2006.02.018

    Article  PubMed  CAS  Google Scholar 

  33. Cluitmans JC, Hardeman MR, Dinkla S, Brock R, Bosman GJ (2012) Red blood cell deformability during storage: towards functional proteomics and metabolomics in the blood bank. Blood Transfus 10(Suppl 2):s12–s18. doi:10.2450/2012.004S

    PubMed Central  PubMed  Google Scholar 

  34. Barvitenko NN, Adragna NC, Weber RE (2005) Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 15(1–4):1–18. doi:10.1159/000083634

    Article  PubMed  CAS  Google Scholar 

  35. Moreira OC, Oliveira VH, Benedicto LB, Nogueira CM, Mignaco JA, Fontes CF, Barbosa LA (2008) Effects of gamma-irradiation on the membrane ATPases of human erythrocytes from transfusional blood concentrates. Ann Hematol 87(2):113–119. doi:10.1007/s00277-007-0378-3

    Article  PubMed  CAS  Google Scholar 

  36. Lion N, Crettaz D, Rubin O, Tissot JD (2010) Stored red blood cells: a changing universe waiting for its map(s). J Proteome 73(3):374–385. doi:10.1016/j.jprot.2009.11.001

    Article  CAS  Google Scholar 

  37. Anand AJ, Dzik WH, Imam A, Sadrzadeh SM (1997) Radiation-induced red cell damage: role of reactive oxygen species. Transfusion 37(2):160–165

    Article  PubMed  CAS  Google Scholar 

  38. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159(4):471–483

    Article  PubMed  CAS  Google Scholar 

  39. Padmini E, Sundari BT (2008) Erythrocyte glutathione depletion impairs resistance to haemolysis in women consuming alcohol. J Clin Biochem Nutr 42:14–20. doi:10.3164/jcbn.2008003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Fujiwara Y, Kondo T, Murakami K, Kawakami Y (1989) Decrease of the inhibition of lipid-peroxidation by glutathione-dependent system in erythrocytes of non-insulin dependent diabetics. Klin Wochenschr 67(6):336–341. doi:10.1007/Bf01741388

    Article  PubMed  CAS  Google Scholar 

  41. Siems WG, Sommerburg O, Grune T (2000) Erythrocyte free radical and energy metabolism. Clin Nephrol 53:S9–S17

    PubMed  CAS  Google Scholar 

  42. Carvalho B, Quiney NF (1999) ‘Near-miss’ hyperkalaemic cardiac arrest associated with rapid blood transfusion. Anaesthesia 54(11):1094–1096

    Article  PubMed  CAS  Google Scholar 

  43. Murador P, Deffune E (2007) Structural aspects of the erythrocyte membrane. Rev Bras Hematol Hemoter 29(2):168–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação HemoMinas – Divinópolis for red blood cell supply. The work is supported by FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leandro Augusto Barbosa or Hérica de Lima Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, G.A.S., de Oliveira Renó, C., Medina, J.M. et al. The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol 93, 753–760 (2014). https://doi.org/10.1007/s00277-013-1944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1944-5

Keywords

Navigation