Skip to main content
Log in

The effect of γ-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The aim of the present work was to evaluate the redox and oligomeric effects associated with the human hemoglobin of stored red blood cells that had been previously submitted to gamma radiation. Whole blood was collected from healthy donors and irradiated with 25 Gy of γ-radiation within 24 h of collection. At days 3, 5, 7, 9, 11, 14, and 28 postirradiation, fractions were removed and centrifuged, and the levels of methehemoglobin and oxyhemoglobin were measured. Hb was isolated to measure the denaturation and UV–vis spectra. The results from electrophoresis demonstrated that there was no fragmentation or cross-linking of the hemoglobin. However, ferrous center oxidation was identified as a very significant process. This mechanism is likely through an autoxidation process of the ferrous heme center, which has a maximal intensity between 5 and 7 days of storage. Interestingly, a subsequent reduction of the oxidized heme species was observed, and after 9 days of storage, the difference between the ferric species present in the control and irradiated samples was not representative. This interesting fact suggests a type of “protective action” by the blood to control the oxidative stress generated by the gamma irradiation. The UV–vis measurements demonstrated that the oxidized species was predominantly formed by hemichrome species (bis-histidine ferric heme species), which are usually associated with Heinz bodies. After 28 days of storage, evidence from the UV–vis measurements indicated that the oxidation of the irradiated sample was much higher than that observed in the control sample. These results demonstrate that despite the minimal polypeptide changes observed in the hemoglobin of stored red blood cells after gamma irradiation, the oxidation of the heme metallic center is not irrelevant and must be controlled to improve the hematological clinical procedures associated with the storage of red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reiser H, Stadecker MJ (1996) Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases. N Engl J Med 335(18):1369–1377. doi:10.1056/NEJM199610313351807

    Article  PubMed  CAS  Google Scholar 

  2. Billingham RE (1966) The biology of graft-versus-host reactions. Harvey Lect 62:21–78

    PubMed  Google Scholar 

  3. Mathe G, Bernard J, de Vries M, Schwarzenberg L, Larrieu MJ, Lalanne CM, Dutreix A, Amiel JL, Surmont J (1960) New trials with homologous bone marrow grafts after total irradiation in children with acute leukemia in remission. The problem of the secondary syndrome in man. Rev Hematol 15:115–161

    PubMed  CAS  Google Scholar 

  4. Szweda-Lewandowska Z, Krokosz A, Gonciarz M, Zajeczkowska W, Puchała M (2003) Damage to human erythrocytes by radiation-generated HO* radicals: molecular changes in erythrocyte membranes. Free Radic Res 37(10):1137–1143

    Article  PubMed  CAS  Google Scholar 

  5. Abuja PM, Albertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306(1–2):1–17

    Article  PubMed  CAS  Google Scholar 

  6. Moreira OC, Oliveira VH, Benedicto LB, Nogueira CM, Mignaco JA, Fontes CF, Barbosa LA (2008) Effects of gamma-irradiation on the membrane ATPases of human erythrocytes from transfusional blood concentrates. Ann Hematol 87(2):113–119. doi:10.1007/s00277-007-0378-3

    Article  PubMed  CAS  Google Scholar 

  7. Góes EG, Ottoboni MA, Palma PV, Morais FR, Pelá CA, Borges JC, Covas DT (2008) Quality control of blood irradiation with a teletherapy unit: damage to stored red blood cells after cobalt-60 gamma irradiation. Transfusion 48(2):332–340. doi:10.1111/j.1537-2995.2007.01527.x

    PubMed  Google Scholar 

  8. Eder HA, Finch C, McKEE RW (1949) Congenital methemoglobinemia; a clinical and biochemical study of a case. J Clin Invest 28(2):265–272

    Article  PubMed  CAS  Google Scholar 

  9. Karon BS, Van Buskirk CM, Jaben EA, Hoyer JD, Thomas DD (2012) Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfus 10:1–9. doi:10.2450/2012.0099-11

    Google Scholar 

  10. Jaben EA, vBC M (2011) Morphologic changes of red blood cells during blood bank storage at 1–6 degrees Celsius for 42 days. Transfusion 51

  11. Berezina TL, Zaets SB, Morgan C, Spillert CR, Kamiyama M, Spolarics Z, Deitch EA, Machiedo GW (2002) Influence of storage on red blood cell rheological properties. J Surg Res 102(1):6–12. doi:10.1006/jsre.2001.6306

    Article  PubMed  CAS  Google Scholar 

  12. Mukherjee S, Marwaha N, Prasad R, Sharma RR, Thakral B (2010) Serial assessment of biochemical parameters of red cell preparations to evaluate safety for neonatal transfusions. Indian J Med Res 132:715–720

    PubMed  Google Scholar 

  13. Yoshida T, Shevkoplyas SS (2010) Anaerobic storage of red blood cells. Blood Transfus 8(4):220–236. doi:10.2450/2010.0022-10

    PubMed  Google Scholar 

  14. Kanias T, Acker JP (2010) Biopreservation of red blood cells—the struggle with hemoglobin oxidation. FEBS J 277(2):343–356. doi:10.1111/j.1742-4658.2009.07472.x

    Article  PubMed  CAS  Google Scholar 

  15. Karon BS, van Buskirk CM, Jaben EA, Hoyer JD, Thomas DD (2012) Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfus 10(4):453–461. doi:10.2450/2012.0099-11

    PubMed  Google Scholar 

  16. Walpurgis K, Kohler M, Thomas A, Wenzel F, Geyer H, Schanzer W, Thevis M (2012) Storage-induced changes of the cytosolic red blood cell proteome analyzed by 2D DIGE and high-resolution/high-accuracy MS. Proteomics 12(21):3263–3272. doi:10.1002/pmic.201200280

    Article  PubMed  CAS  Google Scholar 

  17. Cluitmans JC, Hardeman MR, Dinkla S, Brock R, Bosman GJ (2012) Red blood cell deformability during storage: towards functional proteomics and metabolomics in the blood bank. Blood Transfus 10(Suppl 2):s12–s18. doi:10.2450/2012.004S

    PubMed  Google Scholar 

  18. Sekeroglu MR, Huyut Z, Him A (2012) The susceptibility of erythrocytes to oxidation during storage of blood: effects of melatonin and propofol. Clin Biochem 45(4–5):315–319. doi:10.1016/j.clinbiochem.2011.12.021

    Article  PubMed  CAS  Google Scholar 

  19. Moroff G, George VM, Siegl AM, Luban NL (1986) The influence of irradiation on stored platelets. Transfusion 26(5):453–456

    Article  PubMed  CAS  Google Scholar 

  20. Zimmermann R, Schoetz AM, Frisch A, Hauck B, Weiss D, Strobel J, Eckstein R (2011) Influence of late irradiation on the in vitro RBC storage variables of leucoreduced RBCs in SAGM additive solution. Vox Sang 100(3):279–284. doi:10.1111/j.1423-0410.2010.01410.x

    Article  PubMed  CAS  Google Scholar 

  21. Evelyn KA, Malloy HT (1938) Microdetermination of oxyhemoglobin, methemoglobin and sulfhemoglobin in a single sample of blood. J Biol Chem 126:7

    Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  23. Boylston M, Beer D (2002) Methemoglobinemia: a case study. Crit Care Nurse 22(4):50–55

    PubMed  Google Scholar 

  24. Coletta M, Amiconi G, Bellelli A, Bertollini A, Carsky J, Castagnola M, Condò S, Brunori M (1988) Alteration of T-state binding properties of naturally glycated hemoglobin, HbA1c. J Mol Biol 203(1):233–239

    Article  PubMed  CAS  Google Scholar 

  25. Moreira LM, Santiago PS, de Almeida EV, Tabak M (2008) Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS): effects of oligomeric dissociation. Colloids Surf B Biointerfaces 61(2):153–163. doi:10.1016/j.colsurfb.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  26. Poli AL, Moreira LM, Hidalgo AA, Imasato H (2005) Autoxidation studies of extracellular hemoglobin of Glossoscolex paulistus at pH 9: cyanide and hydroxyl effect. Biophys Chem 114(2–3):253–260. doi:10.1016/j.bpc.2004.12.041

    Article  PubMed  CAS  Google Scholar 

  27. Poli AL, Moreira LM, Tabak M, Imasato H (2006) SDS (sodium dodecyl sulfate) effect on the autoxidation of the Glossoscolex paulistus giant extracellular hemoglobin: kinetic studies at pH 7.0 and 9.0. Colloids Surf B Biointerfaces 52(1):96–104. doi:10.1016/j.colsurfb.2006.07.010

    Article  PubMed  CAS  Google Scholar 

  28. Zhu H, Ownby DW, Riggs CK, Nolasco NJ, Stoops JK, Riggs AF (1996) Assembly of the gigantic hemoglobin of the earthworm Lumbricus terrestris. Roles of subunit equilibria, non-globin linker chains, and valence of the heme iron. J Biol Chem 271(47):30007–30021

    Article  PubMed  CAS  Google Scholar 

  29. Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y (2010) Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin. J Am Chem Soc 132(17):6091–6098. doi:10.1021/ja909891q

    Article  PubMed  CAS  Google Scholar 

  30. Moreira LM, Poli AL, Costa-Filho AJ, Imasato H (2008) Ferric species equilibrium of the giant extracellular hemoglobin of Glossoscolex paulistus in alkaline medium: HALS hemichrome as a precursor of pentacoordinate species. Int J Biol Macromol 42(2):103–110. doi:10.1016/j.ijbiomac.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  31. Moreira LM, Poli AL, Costa AJ, Imasato H (2006) Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV–vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem 124(1):62–72. doi:10.1016/j.bpc.2006.05.030

    Article  Google Scholar 

  32. Shikama K, Matsuoka A (2003) Human haemoglobin: a new paradigm for oxygen binding involving two types of alphabeta contacts. Eur J Biochem 270(20):4041–4051

    Article  PubMed  CAS  Google Scholar 

  33. Brantley RE, Smerdon SJ, Wilkinson AJ, Singleton EW, Olson JS (1993) The mechanism of autooxidation of myoglobin. J Biol Chem 268(10):6995–7010

    PubMed  CAS  Google Scholar 

  34. Griffon N, Baudin V, Dieryck W, Dumoulin A, Pagnier J, Poyart C, Marden MC (1998) Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates. Protein Sci 7(3):673–680

    Article  PubMed  CAS  Google Scholar 

  35. Marden MC, Griffon N, Poyart C (1995) Oxygen delivery and autoxidation of hemoglobin. Transfus Clin Biol 2(6):473–480. doi:10.1016/S1246-7820(05)80074-6

    Article  PubMed  CAS  Google Scholar 

  36. Pawlak AL (1977) Effect of ligands of ferric hemes on interaction between ferric and ferrous chains in partially oxidized hemoglobin-A. Acta Biol Med Ger 36(5–6):621–624

    PubMed  CAS  Google Scholar 

  37. Tada T, Watanabe Y, Matsuoka A, Ikeda-Saito M, Imai K, Yukio N, Shikama K (1998) African elephant myoglobin with an unusual autoxidation behavior: comparison with the H64Q mutant of sperm whale myoglobin. Bba-Protein Struct M 1387(1–2):165–176. doi:10.1016/S0167-4838(98)00118-6

    Article  CAS  Google Scholar 

  38. Tsuruga M, Matsuoka A, Hachimori A, Sugawara Y, Shikama K (1998) The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J Biol Chem 273(15):8607–8615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPEMIG (Fundação de Amparo à Pesquisa do estado de Minas Gerais) and to hemotherapy service of Fundação HemoMinas - Hemonúcleo Divinópolis for RBC supply.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro A. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, G.C., Maia, G.A.S., Cortes, V.F. et al. The effect of γ-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation. Ann Hematol 92, 899–906 (2013). https://doi.org/10.1007/s00277-013-1719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1719-z

Keywords

Navigation