Skip to main content
Log in

Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress may play a role in the pathogenic mechanism of essential hypertension. Lipid peroxidation can alter the cellular structure of membrane-bound enzymes by changing the membrane phospholipids fatty acids composition. We investigated the relationship between (Na + K)-ATPase activity, lipid peroxidation, and erythrocyte fatty acid composition in essential hypertension. The study included 40 essential hypertensive and 49 healthy normotensive men (ages 35–60 years). Exclusion criteria were obesity, dyslipidemia, diabetes mellitus, smoking, and any current medication. Patients underwent 24-h ambulatory blood pressure monitoring and blood sampling. Lipid peroxidation was measured in the plasma and erythrocytes as 8-isoprostane or malondialdehyde (MDA), respectively. Antioxidant capacity was measured as ferric reducing ability of plasma (FRAP) in the plasma and as reduced/oxidized glutathione (GSH/GSSG ratio) in erythrocytes. (Na + K)-ATPase activity and fatty acids were determined in erythrocyte membranes. Hypertensives had higher levels of plasma 8-isoprostane, erythrocyte MDA, and relative percentage of saturated membrane fatty acids, but lower plasma FRAP levels, erythrocyte GSH/GSSG ratio, (Na + K)-ATPase activity and relative percentage of unsaturated membrane fatty acids, compared with normotensives. Day-time systolic and diastolic blood pressures correlated positively with lipid peroxidation parameters, but negatively with (Na + K)-ATPase activity. These findings suggest that the modulation of (Na + K)-ATPase activity may be associated with changes in the fatty acid composition induced by oxidative stress and provide evidence of a role for this enzyme in the pathophysiology of essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lassègue B, Griendling K (2004) Reactive oxygen species in hypertension. An update. Am J Hypertens 17:852–860

    Article  PubMed  CAS  Google Scholar 

  2. Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122:339–352

    Article  PubMed  CAS  Google Scholar 

  3. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 289:2560–2572

    CAS  Google Scholar 

  4. Stidley CA, Hunt WC, Tentori F, Schmidt D, Rohrscheib M, Paine S et al (2006) Changing relationship of blood pressure with mortality over time among hemodialysis patients. J Am Soc Nephrol 17:513–520

    Article  PubMed  Google Scholar 

  5. Chen X, Touyz RM, Bae Park J, Schiffrin EL (2001) Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38:606–611

    PubMed  CAS  Google Scholar 

  6. Pedro-Botet J, Covas MI, Martin S, Rubies-Prat J (2000) Decreased endogenous antioxidant enzymatic status in essential hypertension. J Hum Hypertens 14:343–345

    Article  PubMed  CAS  Google Scholar 

  7. John S, Schmieder RE (2003) Potential mechanisms of impaired endothelial function in arterial hypertension and hypercholesterolemia. Curr Hypertens Rep 5:199–207

    Article  PubMed  Google Scholar 

  8. Stark G (2005) Functional consequences of oxidative membrane damage. Membr Biol 205:1–16

    Article  CAS  Google Scholar 

  9. Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B (2004) Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes. J Lipid Res 45:1846–1851

    Article  PubMed  CAS  Google Scholar 

  10. Elizondo A, Araya J, Rodrigo R, Poniachik J, Signorini C, Sgherri C, Comporti M, Videla LA (2007) Docosahexaenoic acid and docosapentaenoic acid levels in liver and erythrocyte phospholipids from obese non-alcoholic fatty liver disease patients. Obesity 15:24–31

    PubMed  CAS  Google Scholar 

  11. Felton CV, Stevenson JC, Godsland IF (2004) Erythrocyte-derived measures of membrane lipid composition in healthy men: associations with arachidonic acid at low to moderate not high insulin sensitivity. Metabolism 53:571–577

    Article  PubMed  CAS  Google Scholar 

  12. Vajreswari A, Rupalatha M, Rao PS (2002) Effect of altered dietary n-6-to-n-3 fatty acid ratio on erythrocyte lipid composition and membrane-bound enzymes. J Nutr Sci Vitaminol (Tokio) 48:365–370

    CAS  Google Scholar 

  13. Bartoli GM, Palozza P, Luberto C, Franceschelli P, Piccioni E (1995) Dietary fish oil inhibits human erythrocyte Mg,NaK-ATPase. Biochem Biophys Res Commun 213:881–887

    Article  PubMed  CAS  Google Scholar 

  14. Rodrigo R, Castillo R (2006) Pathophysiological mechanisms of renal damage by alcohol consumption: involvement of oxidative stress. In: Yoshida R (ed) Trends in Alcohol Abuse and Alcoholism Research. Nova Publishers

  15. Grover AK, Samson SE, Robinson S, Kwan CY (2003) Effects of peroxynitrite on sarcoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle. Am J Physiol Cell Physiol 284:C294–C301

    PubMed  CAS  Google Scholar 

  16. Hamilton BP, Blaustein MP (2006) Molecular mechanisms linking sodium to hypertension: report of a symposium. J Investig Med 54:86–94

    PubMed  CAS  Google Scholar 

  17. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 289:2560–2572

    CAS  Google Scholar 

  18. Myers MG, Tobe SW, McKay DW, Bolli P (2005) New algorithm for the diagnosis of hypertension. Am J Hypertens 18:1369–1374

    Article  PubMed  Google Scholar 

  19. O’Brien E, Mee F, Atkins N, O’Malley K (1991) Short report: accuracy of the Spacelabs 90207 determined by to the British Hypertension Society Protocol. J Hypertens 9:573–574

    Article  PubMed  CAS  Google Scholar 

  20. Groppelli A, Omboni S, Parati G, Mancia G (1992) Evaluation of noninvasive blood pressure monitoring devices Spacelabs 90202 and 90207 versus resting and ambulatory 24-h intra-arterial blood pressure. Hypertension 20:227–232

    PubMed  CAS  Google Scholar 

  21. Sun M, Tien J, Jones R, Ward R (1996) A new approach to reproducibility assessment: clinical evaluation of SpaceLabs Medical oscillometric blood pressure monitor. Biomed Instrum Technol 30:439–448

    PubMed  CAS  Google Scholar 

  22. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  23. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  25. Pradelles P, Grassi J, Maclouf J (1985) Enzyme immunoassays of eicosanoids using AchE as label: an alternative to radioimmunoassay. Anal Chem 57:1170–1173

    Article  PubMed  CAS  Google Scholar 

  26. Katz AI, Epstein FH (1967) The role of sodium–potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J Clin Invest 46:1999–2011

    PubMed  CAS  Google Scholar 

  27. Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Huertas JR, Palomino N, Ochoa JJ, Quiles JL, Ramirez-Tortosa MC, Battino M, Robles R, Mataix J (1998) Lipid peroxidation and antioxidants in erythrocyte membranes of full-term and preterm newborns. Biofactors 8:133–137

    PubMed  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  31. Araya J, Rodrigo R, Orellana M, Rivera G (2001) Red wine raises HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes. Br J Nutr 86:189–195

    PubMed  CAS  Google Scholar 

  32. Redon J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Saez GT (2003) Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41:1096–1101

    Article  PubMed  CAS  Google Scholar 

  33. Kashyap MK, Yadav V, Sherawat BS, Jain S, Kumari S, Khullar M et al (2005) Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol Cell Biochem 277:89–99

    Article  PubMed  CAS  Google Scholar 

  34. Hozawa A, Ebihara S, Ohmori K, Kuriyama S, Ugajin T, Yayoi Koizumi Y et al (2004) Increased plasma 8-isoprostane levels in hypertensive subjects: the Tsurugaya project. Hypertens Res 27:557–561

    Article  PubMed  CAS  Google Scholar 

  35. Gibson RA, Neumann MA, Burnard SL, Rinaldi JA, Patten GS, McMurchie EJ (1992) The effect of dietary supplementation with eicosapentaenoic acid on the phospholipid and fatty acid composition of erythrocytes of marmoset. Lipids 27:169–176

    Article  PubMed  CAS  Google Scholar 

  36. Knapp HR, Hullin F, Salem N Jr (1994) Asymmetric incorporation of dietary n−3 fatty acids into membrane aminophospholipids of human erythrocytes. J Lipid Res 35:1283–1291

    PubMed  CAS  Google Scholar 

  37. Alexander-North LS, North JA, Kiminyo KP, Buettner GR, Spector AA (1994) Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells. J Lipid Res 35:1773–1785

    PubMed  CAS  Google Scholar 

  38. Van Ginkel G, Sevanian A (1994) Lipid peroxidation-induced membrane structural alterations. Methods Enzymol 233:273–288

    Article  PubMed  Google Scholar 

  39. Leclerc L, Marden M, Poyart C (1991) Inhibition of the erythrocyte (Ca2++Mg2+)-ATPase by nonheme iron. Biochim Biophys Acta 1062:35–38

    Article  PubMed  CAS  Google Scholar 

  40. Fukuda K, Davies SS, Nakajima T, Ong BH et al (2005) Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ Res 97:1262–1269

    Article  PubMed  CAS  Google Scholar 

  41. Kocak-Toker N, Giris M, Tulubas F, Uysal M, Aykac-Toker G (2005) Peroxynitrite induced decrease in Na+, K+-ATPase activity is restored by taurine. World J Gastroenterol 11:3554–3557

    PubMed  CAS  Google Scholar 

  42. Norman RI, Achall N. (1993) Cell membrane microviscosity and Ca(2+)-Mg(2+)-ATPase activity do not contribute to hypertension in the spontaneously hypertensive rat model. Clin Sci (Lond) 85:585–591

    CAS  Google Scholar 

  43. Liu Y, Longmore RB (1997) Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver. Lipids 32:965–969

    Article  PubMed  CAS  Google Scholar 

  44. Begin ME (1990) Fatty acids, lipid peroxidation and diseases. Proc Nutr Soc 49:261–267

    Article  PubMed  CAS  Google Scholar 

  45. De Lorgeril M, Salen P (2003) Dietary prevention of coronary heart disease: focus on omega-6/omega-3 essential fatty acid balance. World Rev Nutr Diet 92:57–73

    PubMed  Google Scholar 

  46. Harris WS (2006) The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep 8:453–459

    Article  PubMed  CAS  Google Scholar 

  47. Wijendran V, Hayes KC (2004) Dietary n−6 and n−3 fatty acid balance and cardiovascular health. Annu Rev Nutr 24:597–615

    Article  PubMed  CAS  Google Scholar 

  48. Iwamoto T, Kita S (2006) Topics on the Na+/Ca2+ exchanger: role of vascular NCX1 in salt-dependent hypertension. J Pharmacol Sci 102:32–36

    Article  PubMed  CAS  Google Scholar 

  49. Hallaq HA, Haupert GT Jr (1989) Positive inotropic effects of the endogenous Na+/K(+)-transporting ATPase inhibitor from the hypothalamus. Proc Natl Acad Sci USA 86:10080–10084

    Article  PubMed  CAS  Google Scholar 

  50. Shaikh IM, Lau BW, Siegfried BA, Valdes R Jr (1991) Isolation of digoxin-like immunoreactive factors from mammalian adrenal cortex. J Biol Chem 266:13672–13678

    PubMed  CAS  Google Scholar 

  51. Manunta P, Stella P, Rivera R et al (1999) Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension. 34:450–456

    PubMed  CAS  Google Scholar 

  52. Zhang W, Huang BS, Leenen FH (1999) Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am J Physiol 276:H1608–H1615

    PubMed  CAS  Google Scholar 

  53. Dostanic-Larson I, Van Huysse JW, Lorenz JN, Lingrel JB (2005) The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 102:15845–15850

    Article  PubMed  CAS  Google Scholar 

  54. Dostanic I, Paul RJ, Lorenz JN, Theriault S, Van Huysse JW, Lingrel JB (2005) The alpha2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol Heart Circ Physiol 288:H477–H485

    Article  PubMed  CAS  Google Scholar 

  55. Kaplan JH (2005) The sodium pump and hypertension: a physiological role for the cardiac glycoside binding site of the Na,K-ATPase. Proc Natl Acad Sci USA 102:15723–15724

    Article  PubMed  CAS  Google Scholar 

  56. Bova S, Blaustein MP, Ludens JH, Harris DW, DuCharme DW, Hamlyn JM (1991) Effects of an endogenous ouabain-like compound on heart and aorta. Hypertension 17:944–950

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Fondo Nacional de Investigación Científica y Tecnológica (FONDECYT, grant number 1040429, Chile Government), Procaps Laboratory (Colombia) and Gynopharm CFR Laboratory (Chile) for their financial support of this study. The technical assistance of Mr. Diego Soto is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigo, R., Bächler, J.P., Araya, J. et al. Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol Cell Biochem 303, 73–81 (2007). https://doi.org/10.1007/s11010-007-9457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9457-y

Keywords

Navigation