Skip to main content

Advertisement

Log in

Anomalous compressibility in (Fe,Al)-bearing bridgmanite: implications for the spin state of iron

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The valence and spin states of Fe in (Fe,Al)-bearing bridgmanite (bdg) affect its physical properties, which is important for the interpretation of geophysical observations. Currently, tens of studies on the compressibility and spin states of Fe-bearing bdg have been reported. A consensus is that Fe-bearing bdg shows spin transition, which affects its elastic parameters. However, there is a conflict between reports on the compressibility and spin states of (Fe,Al)-bearing bdg in experiments using samples pre-synthesized in a multi-anvil apparatus (MA), and samples directly synthesized in a diamond anvil cell (DAC). There are no reports showing evidence of spin transition of Fe in compression experiments using (Fe,Al)-bearing bdg samples pre-synthesized in a MA, while those synthesized at relatively high pressure (at least above 45 GPa) in a DAC all exhibited the spin transition. Here, we performed synchrotron X-ray diffraction measurements on Mg0.85Fe0.09Al0.21Si0.86O3 and Mg0.85Fe0.14Al0.05Si0.96O3 bdg synthesized at relatively high pressure in a laser-heated DAC from amorphous starting material up to 47 and 56 GPa, respectively, at room temperature. The obtained pressure (P)–lattice volume (V) relations show noticeable softening at 22–30 GPa and 35–45 GPa, respectively, which is probably due to the spin transition of Fe. Combining our results and previous reports, we suggest that the lower mantle bdg is capable of containing low-spin Fe3+, which questions the general view. Such a transition changes density and may affect the physical properties of bridgmanite such as thermal conductivity and iron partitioning coefficient, thus having profound implications for mantle dynamics, and the chemical composition of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badro J, Rueff J-P, Vankó G, Monaco G, Fiquet G, Guyot F (2004) Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:383–386

    Google Scholar 

  • Boffa-Ballaran T, Kurnosov A, Glazyrin K, Frost DJ, Merlini M, Hanfland M, Caracas R (2012) Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet Sci Lett 333–334:181–190

    Google Scholar 

  • Catalli K, Shim SH, Prakapenka VB, Zhao JY, Sturhahn W, Chow P, Xiao YM, Liu HZ, Cynn H, Evans WJ (2010) Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth Planet Sci Lett 289:68–75

    Google Scholar 

  • Catalli K, Shim SH, Dera P, Prakapenka VB, Zhao JY, Sturhahn W, Chow P, Xiao YM, Cynn H, Evans WJ (2011) Effects of the Fe3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities. Earth Planet Sci Lett 310:293–302

    Google Scholar 

  • Dorfman SM, Dutton SE, Potapkin V, Chumakov AI, Rueff J-P, Chow P, Xiao Y, Cava RJ, Duffy TS, McCammon C, Gillet P (2016) Electronic transitions of iron in almandine-composition glass to 91 GPa. Am Mineral 101:1659–1667

    Google Scholar 

  • Dorfman SM, Potapkin V, Lv M et al (2020) Effects of composition and pressure on electronic states of iron in bridgmanite. Am Mineral 105:1030–1039

    Google Scholar 

  • Fujino K, Nishio-Hamane D, Seto Y, Sata N, Nagai T, Shinmei T, Irifune T, Ishii H, Hiraoka N, Cai YQ, Tsuei KD (2012) Spin transition of ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet Sci Lett 317:407–412

    Google Scholar 

  • Glazyrin K, Boffa Ballaran TB, Frost DJ, McCammon C, Kantor A, Merlini M, Hanfland M, Dubrovinsky L (2014) Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet Sci Lett 393:182–186

    Google Scholar 

  • Hirao N, Kawaguchi SI, Hirose K, Shimizu K, Ohtani E, Ohishi Y (2020) New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter Radiat Extremes 5:018403

    Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251

    Google Scholar 

  • Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys Rev Lett 106:118501

    Google Scholar 

  • Hsu H, Yu YG, Wentzcovitch RM (2012) Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth Planet Sci Lett 359–360:34–39

    Google Scholar 

  • Hummer DR, Fei Y (2012) Synthesis and crystal chemistry of Fe3 + -bearing (Mg, Fe3 +)(Si, Fe3 +)O3 perovskite. Am Mineral 97:1915–1921

    Google Scholar 

  • Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie DC, Frost DJ (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327:193–195

    Google Scholar 

  • Ismailova L, Bykova E, Bykov M, Cerantola V, McCammon C, Ballaran TB, Bobrov A, Sinmyo R, Dubrovinskaia N, Glazyrin K, Liermann HP, Kupenko I, Hanfland M, Prescher C, Prakapenka V, Svitlyk V, Dubrovinsky L (2016) Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Sci Adv 2:e1600427

    Google Scholar 

  • Jackson JM, Sturhahn W, Shen GY, Zhao JY, Hu MY, Errandonea D, Bass JD, Fei YW (2005) A synchrotron Mössbauer spectroscopy study of (Mg, Fe)SiO3 perovskite up to 120 GPa. Am Mineral 90:199–205

    Google Scholar 

  • Kupenko I, McCammon C, Sinmyo R, Cerantola V, Potapkin V, Chumakov AI, Kantor A, Rüffer R, Dubrovinsky L (2015) Oxidation state of the lower mantle: in situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth Planet Sci Lett 423:78–86

    Google Scholar 

  • Li J, Struzhkin VV, Mao H-K, Shu J, Hemley RJ, Fei Y, Mysen B, Dera P, Prakapenka VB, Shen G (2004) Electronic spin state of iron in lower mantle perovskite. Proc Natl Acad Sci USA 101(39):14027–14030

    Google Scholar 

  • Lin JF, Alp EE, Mao Z, Inoue T, McCammon C, Xia YM, Chow P, Zhao JY (2012) Electronic spin states of ferric and ferrous iron in the lower mantle silicate perovskite. Am Mineral 97:592–597

    Google Scholar 

  • Lin JF, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275

    Google Scholar 

  • Lin JF, Mao Z, Yang J, Liu J, Xiao Y, Chow P, Okuchi T (2016) High-spin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower mantle. Geophys Res Lett 43:6952–6959

    Google Scholar 

  • Liu J, Dorfman SM, Zhu F, Li J, Wang Y, Zhang D, Xiao Y, Bi W, Ercan Alp E (2018) Valence and spin states of iron are invisible in Earth’s lower mantle. Nat Commun 9:1284

    Google Scholar 

  • Maeda F, Kamada S, Ohtani E, Hirao N, Mitsui T, Masuda R, Miyahara M, McCammon C (2017) Spin state and electronic environment of iron in basaltic glass in the lower mantle. Am Mineral 102(10):2106–2112

    Google Scholar 

  • Mao Z, Lin J-F, Yang J, Wu J, Watson HC, Xiao Y, Chow P, Zhao J (2014) Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mossbauer and X-ray emission spectroscopy. Am Mineral 99(2–3):415–423

    Google Scholar 

  • Mao Z, Lin JF, Yang J, Inoue T, Prakapenka VB (2015) Effects of the Fe3+ spin transition on the equation of state of bridgmanite. Geophys Res Lett 42:4335–4342

    Google Scholar 

  • Mao Z, Wang F, Lin JF, Fu S, Yang J, Wu X, Okuchi T, Tomioka N, Prakapenka VB, Xiao Y, Chow P (2017) Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy. Am Mineral 102:357–368

    Google Scholar 

  • Miyajima N, Langenhorst F, Frost DJ, Yagi T (2004) Electron channeling spectroscopy of iron in majoritic garnet and silicate perovskite using a transmission electron microscopy. Phys Earth Planet Inter 143:601–609

    Google Scholar 

  • Mohn CE, Trønnes RG (2016) Iron spin state and site distribution in FeAlO3-bearing bridgmanite. Earth Planet Sci Lett 440:178–186

    Google Scholar 

  • Murakami M, Goncharov AF, Hirao N, Masuda R, Mitsui T, Thomas T-M, Bina CR (2014) High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun 5:5428

    Google Scholar 

  • Nishio-Hamane D, Seto Y, Fujino K, Nagai T (2008) Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite. Phys Earth Planet Inter 166:219–225

    Google Scholar 

  • Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N (2011) Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473:199–202

    Google Scholar 

  • O’Keeffe M, Hyde BG (1977) Some structures topologically related to cubic perovskite (E21) ReO3 (D09) and Cu3Au (L12). Acta Cryst B33:3802–3813

    Google Scholar 

  • Okuda Y, Ohta K, Yagi T, Sinmyo R, Wakamatsu T, Hirose K, Ohishi Y (2017) The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth’s lower mantle. Earth Planet Sci Lett 474:25–31

    Google Scholar 

  • Okuda Y, Ohta K, Sinmyo R, Hirose K, Yagi T, Ohishi Y (2019) Effect of spin transition of iron on the thermal conductivity of (Fe, Al)-bearing bridgmanite. Earth Planet Sci Lett 520:188–198

    Google Scholar 

  • Piet H, Badro J, Nabiei F, Dennenwaldt T, Shim S-H, Cantoni M, Hébert C, Gillet P (2016) Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proc Natl Acad Sci USA 113:11127–11130

    Google Scholar 

  • Potapkin V, McCammon C, Glazyrin K, Kantor A, Kupenko I, Prescher C, Sinmyo R, Smirnov GV, Chumakov AI, Ruffer R, Dubrovinsky L (2013) Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nat Commun 4:1427. https://doi.org/10.1038/Ncomms2436

    Article  Google Scholar 

  • Prescher C, Weigel C, McCammon C, Narygina O, Potapkin V, Kupenko I, Sinmyo R, Chumakov AI, Dubrovinsky D (2014) Iron spin state in silicate glass at high pressure: implications for melts in the Earth’s lower mantle. Earth Planet Sci Lett 385:130–136

    Google Scholar 

  • Sata N, Shen G, Rivers ML, Sutton SR (2002) Pressure–volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104114

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Google Scholar 

  • Shim S-H, Duffy TS, Shen G (2000) The stability and P-V-T equation of state for CaSiO3 perovskite in the earth’s lower mantle. J Geophys Res 105:25955–25968

    Google Scholar 

  • Singh AK, Takemura K (2001) Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media. J Appl Phys 90:3269–3275

    Google Scholar 

  • Sinmyo R, Hirose K (2010) The Soret diffusion in laser-heated diamond-anvil cell. Phys Earth Planet Inter 180:172–178

    Google Scholar 

  • Sinmyo R, Hirose K, Muto S, Ohishi Y, Yasuhara A (2011) The valence state and partitioning of iron in the Earth’s lowermost mantle. J Geophys Res 116:B07205

    Google Scholar 

  • Sinmyo R, McCammon C, Dubrovinsky L (2017) The spin state of Fe3+ in lower mantle bridgmanite. Am Mineral 102:1263–1269

    Google Scholar 

  • Solomatova NV, Jackson JM, Sturhahn W, Rossman GR, Roskosz M (2017) Electronic environments of ferrous iron in rhyolitic and basaltic glasses at high pressure. J Geophys Res Solid Earth 122:6306–6322

    Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2007) Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth Planet Sci Lett 253:282–290

    Google Scholar 

  • Tateno S, Komabayashi T, Hirose K, Hirao N, Ohishi Y (2019) Static compression of B2 KCl to 230 GPa and its P-V-T equation of state. Am Mineral 104(5):718–723

    Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P-V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108(B10):2462

    Google Scholar 

  • Tsuchiya T, Wang X (2013) Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. J Geophys Res Solid Earth 118:83–91

    Google Scholar 

  • Vanpeteghem CB, Angel RJ, Ross NL, Jacobsen SD, Dobson D, Litasov KD, Ohtani E (2006) Al, Fe substitution in the MgSiO3 perovskite structure: a single crystal X-ray diffraction study. Phys Earth Planet Inter 155:96–103

    Google Scholar 

  • Zhu F, Liu J, Lai X et al (2020) Synthesis, elasticity and spin state of an intermediate MgSiO3 FeAlO3 bridgmanite: implications for iron in Earth’s lower mantle. J Geophys Res Solid Earth. https://doi.org/10.1029/2020JB019964

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Tateno for helpful discussion. The synchrotron X-ray diffraction measurements were conducted at BL10XU of SPring-8 (Proposal Nos. 2017B0080, 2018A0080). This work was supported by JSPS KAKENHI Grant Numbers 15H05827 and 17H04861.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Okuda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2371 kb)

Appendix

Appendix

In order to estimate the uniaxial stress in our bdg sample, we calculated the St value of Au sputtered on both sides of the sample from the diffraction of Au. The measured lattice constant am can be written as the following (Singh and Takemura 2001):

$$a_{\text{m}} \left( {hkl} \right) = M_{0} + M_{1} \left\{ {3\left( {1 - 3\sin^{2} \theta } \right){{\varGamma }}\left( {hkl} \right)} \right\},$$
(3)
$$M_{0} = a_{p} \left\{ {1 + \left( {\frac{\alpha t}{3}} \right)\left( {1 - 3\sin^{2} \theta } \right)\left[ {S_{11} - S_{12} - \left( {2G_{V} } \right)^{ - 1} \left( {1 - \alpha^{ - 1} } \right)} \right]} \right\},$$
(4)
$$M_{1} = - a_{p} \alpha tS/3,$$
(5)
$${{\varGamma }}\left( {hkl} \right) = \left( {h^{2} k^{2} + k^{2} l^{2} + l^{2} h^{2} } \right)/\left( {h^{2} + k^{2} + l^{2} } \right)^{2} ,$$
(6)
$$S = S_{11} - S_{12} - S_{44} /2,$$
(7)

where ap is the lattice parameter under hydrostatic pressure, Sij is the single-crystal elastic compliance, GV is the shear modulus of the polycrystalline aggregate under the assumption of strain continuity across the grain boundaries, α is the ratio of uniform stress model and uniform strain model (0.5 < α<1). By assuming M0 ~ ap, we can obtain the St value from Eq. (5):

$$St\sim - 3M_{1} /\left( {\alpha M_{0} } \right),$$
(8)

where M0 and M1 were obtained from fitting the slope of a Γ plot, a plot am(hkl) versus 3(1 − 3sin2θ)Γ(hkl) (Fig. S2).

We used (111), (200), (220) and (311) reflections to obtain each of the four plots. Note that we excluded a certain reflection which overlapped with peaks of samples or the pressure medium. Also, using α = 1 (uniform stress model), we estimated the St values (Fig. 5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuda, Y., Ohta, K., Sinmyo, R. et al. Anomalous compressibility in (Fe,Al)-bearing bridgmanite: implications for the spin state of iron. Phys Chem Minerals 47, 40 (2020). https://doi.org/10.1007/s00269-020-01109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01109-3

Keywords

Navigation