Skip to main content
Log in

Structural, magnetic and Mössbauer studies of Ba0.5Sr1.5Me2Fe12O22 (where Me = Co, Zn and Ni) Y-type hexaferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Y-type hexaferrites, Ba0.5Sr1.5Me2Fe12O22 (where Me = Co, Zn and Ni), were synthesized by employing the solid-state technique. The prepared samples were examined using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray analysis (EDAX) spectrometer, X-ray photoelectron spectroscopy (XPS), magnetic and room temperature Mössbauer spectroscopy techniques. The information from the XRD confirms the rhombohedral structure with space group R-3m for the samples under study. The average crystallite size varies between 75 and 80 nm. The morphology of the samples by FESEM reveals that the grains are interconnective, homogeneously distributed and the average grain size varies from 2.2 to 3.1 µm. The nominal composition of all elements and their oxidation state was established with XPS and confirms that the Fe ions are in + 3 state. The measured room temperature magnetization properties inveterate the soft ferrimagnetic character of the samples. The enhanced saturation magnetization is noticed for Zn Y-type hexaferrites, i.e., 31 emu/g. The room temperature Mössbauer spectra confirm the existence of magnetic ordering in all the compounds. The Mössbauer spectra confirm the coevality of Fe ions at six sub-lattices with dissimilar occupancy ratio. The isomer shift values confirm the Fe ions in Fe3+ state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request for non-commercial purpose.

References

  1. Y. Bai, F. Xu, L. Qiao, J. Zhou, J. Alloys Compd. 473, 505 (2009)

    Article  CAS  Google Scholar 

  2. Y.A. Farzin, O. Mirzaee, A. Ghasemi, Mater. Chem. Phys. 178, 149 (2016)

    Article  Google Scholar 

  3. J.M. Hu, C.W. Nan, APL Mater. 7, 080905 (2019)

    Article  Google Scholar 

  4. A. Alhadhrami, M. Zeshan, H. M. T. Farid, J. Taibah Univ. Sci. 17, 2236368 (2023)

  5. S. Aman, F.F. Alharbi, S. Gouadria, H.M.T. Farid, J. Mater. Sci. Mater. Electron. 34, 1 (2023)

    Article  Google Scholar 

  6. H.B. Lee, S.H. Chun, K.W. Shin, B.G. Jeon, Y.S. Chai, K.H. Kim, J. Schefer, H. Chang, S.N. Yun, T.Y. Joung, J.H. Chung, Phys. Rev. B 86, 1 (2012)

    Google Scholar 

  7. R.B. Jotania, H.S. Virk, Solid State Phenom. 189, 209 (2012)

    Article  CAS  Google Scholar 

  8. M. Zeshan, M. Ali, M.M. Alanazi, S.A.M. Abdelmohsen, R.Y. Khosa, A.G. Al-Sehemi, M.Z. Ansari, R.A. Tayeb, H.M.T. Farid, M.M. Rahman, Ceram. Int. 49, 20536 (2023)

    Article  CAS  Google Scholar 

  9. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Nano-Micro Lett. 8, 291 (2016)

    Article  Google Scholar 

  10. Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, Mater. Sci. Eng. B 99, 266 (2003)

    Article  Google Scholar 

  11. J. Buršík, R. Kužel, K. Knížkek, I. Drbohlav, J. Solid State Chem. 203, 100 (2013)

    Article  Google Scholar 

  12. G. Mukhtar, J. Mohammed, T.T. Carol, T.N. Halilu, S. Sharma, U.M. Isah, S.K. Godara, A.K. Srivastava, Solid State Sci. 113, 106549 (2021)

    Article  CAS  Google Scholar 

  13. H. Donya, R. Darwesh, M.F. Alotaibi, H.M.T. Farid, J. Sol-Gel Sci. Technol. 108, 695 (2023)

    Article  CAS  Google Scholar 

  14. M. Obol, C. Vittoria, IEEE Trans. Magn. 39, 3103 (2003)

    Article  CAS  Google Scholar 

  15. R. Uhrecký, J. Buršík, M. Soroka, R. Kužel, J. Prokleška, Thin Solid Films 622, 104 (2017)

    Article  Google Scholar 

  16. T. Kimura, G. Lawes, A.P. Ramirez, Phy. Rev. Lett. 94, 137201 (2005)

    Article  CAS  Google Scholar 

  17. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  CAS  Google Scholar 

  18. I. Mohammed, J. Mohammed, A.U. Kende, A.M. Wara, Y.A. Aliero, U.Z. Magawata, A.B. Umar, A.K. Srivastava, Appl. Surf. Sci. Adv. 16, 100416 (2023)

    Article  Google Scholar 

  19. N. Raju, S.S.K. Reddy, C.G. Reddy, P.Y. Reddy, K.R. Reddy, V.R. Reddy, J. Magn. Magn. Mater. 384, 27 (2015)

    Article  CAS  Google Scholar 

  20. M. Manendar, S.S.K. Reddy, J. Ramesh, M.S. Reddy, M.M. Raja, C.G. Reddy, P.Y. Reddy, V.R. Reddy, Ceram. Int. 47, 9591 (2021)

    Article  CAS  Google Scholar 

  21. T. Hosseinabad, G. Nabiyouni, K. Hedayati, J. Mater. Sci. Mater. Electron. 35, 1 (2024)

    Article  Google Scholar 

  22. J. Temuujin, M. Aoyama, M. Senna, T. Masuko, C. Ando, H. Kishi, J. Solid State Chem. 177, 3903 (2004)

    Article  CAS  Google Scholar 

  23. M. Ahmad, I. Ali, F. Aen, M.U. Islam, M.N. Ashiq, S. Atiq, W. Ahmad, M.U. Rana, Ceram. Int. 38, 1267 (2012)

    Article  CAS  Google Scholar 

  24. R. Tholkappiyan, K. Vishista, F. Hamed, J. Phys. 88, 1–10 (2017)

  25. M. Ahmadipour, K.V. Rao, V. Rajendar, J. Nanomater. 2012, 116 (2012)

    Article  Google Scholar 

  26. M. Manendar, M.S. Reddy, V.R. Reddy, C.G. Reddy, P.Y. Reddy, AIP Conf. Proc. 2265, 2 (2020)

    Google Scholar 

  27. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  28. M. Ahmadipour, M.J. Abu, M.F.A. Rahman, M.F. Ain, Z.A. Ahmad, Micro Nano Lett. 11, 147 (2016)

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  30. K. Swetha, S. Bharadwaj, J.A. Chelvane, H. Afzal, R. Venkatesh, K.V.S. Kumar, K.L. Yanapu, Ceram. Int. 48, 12779 (2022)

    Article  CAS  Google Scholar 

  31. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S.Y. Pung, J. Mater. Sci. Mater. Electron. 30, 6806 (2019)

    Article  CAS  Google Scholar 

  32. K.G. Reddy, M.V.R. Reddy, Mater. Sci. Semicond. Process. 154, 107198 (2023)

    Article  Google Scholar 

  33. D. Briggs, Handb. Adhes. Second Ed. 621 (2005)

  34. A.K. Opitz, C. Rameshan, M. Kubicek, G.M. Rupp, A. Nenning, T. Götsch, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig, Top. Catal. 61, 2129 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Swetha, S. Bharadwaj, K. Kommuri, R. Venkatesh, J.A. Chelvane, K.V.S. Kumar, Y.K. Lakshmi, J. Electron. Mater. 52, 8250 (2023)

    Article  CAS  Google Scholar 

  36. J.A. Rajesh, B.-K. Min, J.-H. Kim, H. Kim, K.-S. Ahn, J. Electrochem. Soc. 163, A2418 (2016)

    Article  CAS  Google Scholar 

  37. J. Yang, H. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem. C 114, 111 (2010)

    Article  CAS  Google Scholar 

  38. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  39. M. Shezad, X. Liu, S. Feng, X. Kan, T.J. Shehzad, A. Mudassir, W. Wang, C. Liu, Ceram. Int. 46, 8918 (2020)

    Article  CAS  Google Scholar 

  40. X. Zhang, J. Zhang, Mater. Lett. 269, 127642 (2020)

    Article  CAS  Google Scholar 

  41. G.H. Bindu, V. Kammara, P. Srilekha, K. Swetha, Y.K. Laxmi, P. Veerasomaiah, M. Vithal, J. Mol. Struct. 1273, 134220 (2023)

    Article  CAS  Google Scholar 

  42. K. Swetha, S. Bharadwaj, N. P. Kumar, J. A. Chelvane, and Y. K. Lakshmi, Appl. Phys. A 128, 727 (2022)

  43. A.R. Farhadizadeh, S.A.S. Ebrahimi, S.M. Masoudpanah, J. Magn. Magn. Mater. 382, 233 (2015)

    Article  CAS  Google Scholar 

  44. S.K. Srivastava, M. Kar, S. Ravi, J. Magn. Magn. Mater. 320, 107 (2008)

    Article  Google Scholar 

  45. B. Samantaray, S. Ravi, A. Das, and S. K. Srivastava, J. Appl. Phys. 110, 093906 (2011)

  46. N. Adeela, U. Khan, M. Iqbal, S. Riaz, M. Irfan, H. Ali, K. Javed, I. Bukhtiar, K. Maaz, S. Naseem, J. Alloys Compd. 686, 1017 (2016)

    Article  CAS  Google Scholar 

  47. J. Kim, H. Choi, C.S. Kim, AIP Adv. 10, 1 (2020)

    Google Scholar 

  48. M.H. Won, C.S. Kim, J. Appl. Phys. 115, 113 (2014)

    Article  Google Scholar 

  49. S.K. Yadav, J. Hemalatha, AIP Conf. Proc. (2023). https://doi.org/10.1063/5.0118616

    Article  Google Scholar 

  50. M. Zhang, J. Dai, L. Yin, X. Kong, Q. Liu, Z. Zi, Y. Sun, J. Alloys Compd. 689, 75 (2016)

    Article  CAS  Google Scholar 

  51. A.F. Lehlooh, E.A.A. Rasheed, M.R. Said, A.Y. Hammoudeh, I. Bsoul, S.H. Mahmood, Hyperfine Interact. 239, 23 (2018)

    Article  Google Scholar 

  52. M.H. Won, C.S. Kim, J. Appl. Phys. 113, 2011 (2013)

    Google Scholar 

Download references

Acknowledgements

One of authors B. Srikanth thank the CSIR–HRDG for providing financial assistance in the form of a Junior Research Fellowship (JRF) (File Number: 09/0132(15782)/2022-EMR-I) to carry out the present work. Gratefully acknowledge to Dr. V. R. Reddy, UGC-DAE, CSR, Indore, India for providing Mössbauer measurements and for the helpful discussions during this work, and Dr. Rajeev Rawat, UGC–DAE, CSR, Indore, for magnetization measurements. The authors are thankful to the UGC–NRC, School of Physics, UoH, for the XRD and FESEM measurements. The authors are acknowledged, the UGC–DAE, CSR for providing funding, Project No. CSR-IC-ISOM-50/CSSR-333/202-2021/791 dated 4/3/2021.

Funding

This work is partially funded by UGC–DAE, CSR, Project No. CSR-IC-ISOM-50/CSSR-333/202-2021/791 dated 4/3/2021 and mentioned in the acknowledgement.

Author information

Authors and Affiliations

Authors

Contributions

B. Srikanth and Nagendar. V carried out sample preparation, measurements and analysis, MN and NR analyzed the data and has written the manuscript. MSR, CGR, PYR supervised the work and corrected the draft with necessary modifications.

Corresponding author

Correspondence to M. Sreenath Reddy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose about this work.

Ethical approval

The authors have no potential conflicting interest directly or indirectly to the work submitted for the publication and ensuring that no human participants/animals were involved in this study. The information/data given in the manuscript are original research work and not submitted any-where for any publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, B., Nagendar, V., Manendar, M. et al. Structural, magnetic and Mössbauer studies of Ba0.5Sr1.5Me2Fe12O22 (where Me = Co, Zn and Ni) Y-type hexaferrites. J Mater Sci: Mater Electron 35, 958 (2024). https://doi.org/10.1007/s10854-024-12727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12727-w

Navigation