Skip to main content

Advertisement

Log in

The role of mantle melting in granite-associated hydrothermal systems: He–Ar isotopes in fluids responsible for Sn–Ag–Pb–Zn mineralization in northeast China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The relationship between Sn–Ag mineralization and mantle magmatism is a topic of high interest in current ore deposit research. Here, we investigate porphyry-, skarn-, and cassiterite-sulfide type Sn-polymetallic deposits associated with granitoids and vein-type Ag–Pb–Zn deposits hosted in sub-volcanic rocks in the southern Great Xing’an Range (SGXR), northeast China, as a case example. We use He, Ar, and S isotopes and isotopic end-member simulation calculations to determine the contribution of mantle-derived fluids/melts to the ore mineralization. Our He–Ar isotope data demonstrate that the ore-forming fluids are mixtures of shallow crust-derived fluid containing radiogenic 4He but no radiogenic 40Ar and magmatic fluids with mantle-derived 3He and 40Ar. The Pb–Zn–Ag deposits have a higher contribution of magmatic volatiles than the Sn-polymetallic deposits. Sulfide δ34S values of − 2.7 to − 0.6‰ in the Pb–Zn–Ag deposits are consistent with a magmatic sulfur source, whereas sulfides with δ34S values of − 12.2 to − 0.15‰ in the Sn-polymetallic deposits signal a possibly bimodal source of sulfur, i.e., crustal light sulfur mixed with magmatic sulfur. The noble gas compositions of the ore fluids are controlled by crustal thickness, high 3He fluxes (24 to 404 at/s/cm2), and low residence time (1 to 18 Myr) of He in the asthenosphere below the SGXR. Non-equilibrium open-system magma degassing is evidenced by the range of elevated values of 4He/40Ar* ratios (4.8–127). The 3He/heat ratio of the ore fluids from the Sn and Pb–Zn–Ag deposits overlap (0.01–0.76 × 10−2 cm3 STP J−1 (cubic centimeter at standard temperature and pressure per joule) and 0.02–1.08 × 10−2 cm3 STP J−1, respectively), indicating a consequence of conduction of mantle-derived heat across the magma-hydrothermal interface. Furthermore, an increasing abundance of Sn reserves in the SGXR deposits can be equated with an increase in the mantle-derived He component in the ore fluids. These findings suggest that a continuous flux of mantle-derived fluids/melts plays an essential role in Sn–Ag–Pb–Zn mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allard P (1992) Global emissions of helium-3 by subaerial volcanism. Geophys Res Lett 19:1479–1481

    Article  Google Scholar 

  • Álvarez-Valero AM, Sumino H, Burgess R, Núňez-Guerrero E, Okumura S, Borrajo J, Rodríguez JAL (2022) Noble gas variation during partial crustal melting and magma ascent processes. Chem Geol 588:120635

    Article  Google Scholar 

  • Aspen P, Upton BGJ, Dickin AP (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts; high-pressure syenitic debris from upper mantle sources? Eur J Mineral 2:503–517

    Article  Google Scholar 

  • Bailey DK, Hampton CM (1990) Volatiles in alkaline magmatism. Lithos 26:157–165

    Article  Google Scholar 

  • Baker ET, Lupton JE (1990) Changes in submarine hydrothermal 3He/heat ratios as an indicator of magmatic/tectonic activity. Nature 346:556–558

    Article  Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. Rev Mineral Geochem 47:481–538

    Article  Google Scholar 

  • Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297:379–386

    Article  Google Scholar 

  • Burnard PG, Polya DA (2004) Importance of mantle-derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira. Geochim Cosmochim Acta 68:1607–1615

    Article  Google Scholar 

  • Burnard PG, Hu RZ, Turner G, Bi XW (1999) Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposit, Yunnan province, China. Geochim Cosmochim Acta 63:1595–1604

    Article  Google Scholar 

  • Burnard PG, Harrison D, Turner G, Nesbitt R (2003) Degassing and contamination of noble gases in Mid-Atlantic ridge basalts. Geochem Geophy Geosy 4:1002

    Article  Google Scholar 

  • Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, fluorine in magmas. Rev Mineral 30:231–279

    Google Scholar 

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data of mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Soc Econ Geol 100:337–370

    Google Scholar 

  • Chang Y, Lai Y (2010) Study of characteristics of ore-forming fluid and chronology in the Yindu Ag-Pb-Zn polymetallic ore deposit, Inner Mongolia. Acta Sci Nat Univ Pekin 46:581–593 (in Chinese with English abstract)

    Google Scholar 

  • Chen GZ, Wu G, Wu WH, Zhang T, Li TG, Liu RL, Wu LW, Zhang PC, Jiang B, Wang ZL (2018) Fluid inclusion study and isotope characteristics of the Daolundaba copper-polymetallic deposit in the southern Great Xing’an Range. Earth Sci Front 25:202–221 (in Chinese with English abstract)

  • Chen YQ, Han XL, Zhao HJ, Chen ZZ, Tang Y, Chen W (2010) Characteristics of primary halo zonation and prediction pattern of deep orebody of the Hua’aobaote Pb-Zn-Ag polymetallic deposit, Inner Mongolia. Earth Sci 36:236–246 (in Chinese with English abstract)

    Google Scholar 

  • Chen J, Wang RC, Zhu JC, Lu JJ, Ma DS (2014) Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China. Sci China (Ser D: Earth Sci) 56:2045–2055

    Article  Google Scholar 

  • Chen YQ, Zhou D, Guo LF (2014b) Genetic study on the Huaaobaote Pb-Zn-Ag polymetallic deposit in Inner Mongolia: evidence from fluid inclusions and S, Pb, H, O isotopes. J Jilin Univ 44:1478–1491 (in Chinese with English abstract)

    Google Scholar 

  • Chen GZ, Wu G, Li TG, Liu RL, Li RH, Li YL, Yang F (2021) Mineralization of the Daolundaba Cu-Sn-W-Ag deposit in the southern Great Xing’an Range, China: constraints from geochronology, geochemistry, and Hf isotope. Ore Geol Rev 133:104117

    Article  Google Scholar 

  • Chen XK, Zhou ZH, Zhao JQ, Gao X (2022) Chronology and geochemical composition of cassiterite and zircon from the Maodeng Sn-Cu deposit, Northeastern China: implications for magmatic-hydrothermal evolution and ore-forming process. Ore Geol Rev 150:105159

    Article  Google Scholar 

  • Chiaradia M, Pujol-Sola N, Farre-de-Pablo J, Aiuppa A, Paonita A, Rizzo AL, Brusca L (2018) Geochemistry and isotope composition (Sr, Pb, δ66Zn) of Vulcano fumaroles (Aeolian Islands, Italy). Chem Geol 493:153–171

    Article  Google Scholar 

  • Craig H, Clarke WB, Beg MA (1975) Excess 3He in deep water on the east Pacific rise. Earth Planet Sci Lett 26:125–132

    Article  Google Scholar 

  • Day JMD, Barry P, Hilton DR, Burgess R, Pearson DG, Taylor LA (2015) The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochim Cosmochim Acta 153:116–133

    Article  Google Scholar 

  • Desanois L, Lüders V, Niedermann S, Trumbull RB (2019) Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina: fluid inclusion and noble gas isotopic constraints. Chem Geol 508:78–91

    Article  Google Scholar 

  • Elliot T, Ballentine CJ, O’Nions RK, Ricchiuto T (1993) Carbon, helium, neon and argon isotopes in a Po basin (northern Italy) natural gas field. Chem Geol 106:429–440

    Article  Google Scholar 

  • Farcy B, Arevalo JrR, McDonough WF (2020) K/U of the MORB source and silicate Earth. J Geophys Res, Solid Earth 125: e2020JB020245

  • Farner MJ, Lee CTA (2017) Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet Sci Lett 470:96–107

    Article  Google Scholar 

  • Gao X, Zhou ZH, Breiter K, Ouyang HG, Liu J (2019) Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating. Ore Geol Rev 109:163–183

    Article  Google Scholar 

  • Gautheron C, Moreira M (2002) Helium signature of the subcontinental lithospheric mantle. Earth Planet Sci Lett 199:39–47

    Article  Google Scholar 

  • Gautheron C, Moreira M, Allègre C (2005) He, Ne and Ar compostion of the European lithospheric mantle. Chem Geol 217:97–112

    Article  Google Scholar 

  • Giggenbach WF, Matsuo S (1991) Evaluation of results from 2nd and 3rd IAVCEI field workshops on volcanic gases, Mt Usu, Japan, and White island, New Zealand. Appl Geochem 6:125–141

    Article  Google Scholar 

  • Gonnermann HM, Mukhopadhyay S (2007) Non-equilibrium degassing and a primordial source for helium in ocean island volcanism. Nature 449:1037–1040

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317

    Article  Google Scholar 

  • Grassineau NV, Mattey DP, Lowry D (2001) Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry. Anal Chem 73:220–225

    Article  Google Scholar 

  • Guillot B, Sator N (2012) Noble gases in high-pressure silicate liquids: a computer simulation study. Geochim Cosmochim Acta 80:51–69

    Article  Google Scholar 

  • Guo W, He HY, Qiao L, Liu ZH, Su F, Li JN, Shi GH, Zhu RX (2022) Helium, neon and argon in alkaline basalt-related corundum megacrysts: implications for their origin and forming process. Geochim Cosmochim Acta 322:71–93

    Article  Google Scholar 

  • Haschke M, Günther A, Melnick D, Echtler H, Reutter KJ, Scheuber E, Oncken O (2006) Central and southern Andean tectonic evolution inferred from arc magmatism. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes: Active Subduction Orogeny. Frontiers in Earth Science Series. Berlin, Heidelberg: Springer-Verlag, pp 337–353

  • Hayba DO, Ingebritsen SE (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102:12235–12252

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore-deposits. Nature 370:519–527

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin (-tungsten) ore deposition. Econ Geol 85:457–481

    Article  Google Scholar 

  • Hiett CD, Newell DL, Jessup MJ (2021) 3He evidence for fluid transfer and continental hydration above a flat slab. Earth Planet Sci Lett 556:116722

    Article  Google Scholar 

  • Hilton DR, Porcelli D (2014) Noble gases as tracers of mantle processes. Treatise Geochem (Second Ed) 3:327–349

    Article  Google Scholar 

  • Hilton DR, Barling J, Wheller GE (1995) Effect of shallow level contamination on the helium isotope systematics of ocean-island lavas. Nature 373:330–333

    Article  Google Scholar 

  • Honda M, Patterson DB (1999) Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses. Geochim Cosmochim Acta 63:2863–2874

    Article  Google Scholar 

  • Hong DW, Wang SG, Xie XL, Zhang JS, Wang T (2003) Metallogenic province derived from mantle sources: Nd, Sr, S and Pb isotope evidence from the Central Asian Orogenic Belt. Gondwana Res 6:711–728

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF (2015) A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43:247–250

    Article  Google Scholar 

  • Hu RZ, Burnard PG, Turner G, Bi XW (1998) Helium and argon systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem Geol 146:55–63

    Article  Google Scholar 

  • Hu RZ, Bi XW, Turner G, Burnard P (1999) He-Ar isopotic geochemistry of the ore forming fluid from the Ailaoshan gold ore belt. Sci China (Ser D: Earth Sci) 29:321–330

    Google Scholar 

  • Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC, Wu KX (2004) Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chem Geol 203:305–317

    Article  Google Scholar 

  • Hu RZ, Bi XW, Jiang GH, Chen HW, Peng JT, Qi YQ, Wu LY, Wei WF (2012) Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Miner Deposita 47:623–632

    Article  Google Scholar 

  • Hunter EAO, Hunter JR, Zajacz Z, Keith JD, Hann NL, Christiansen EH, Dorais MJ (2020) Vapor transport and deposition of Cu-Sn-Co-Ag alloys in vesicles in mafic volcanic rocks. Econ Geol 115:279–301

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into the continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Hutchison W, Finch AA, Boyce AJ (2020) The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. Geochim Cosmochim Acta 288:176–198

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Article  Google Scholar 

  • Jambon A, Weber H, Braun O (1986) Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600℃: geochemical implications. Geochim Cosmochim Acta 50:401–408

    Article  Google Scholar 

  • Jean-Baptiste P, Bougault H, Vangriesheim A, Charlou JL, Raford-Knoery J, Fouquet Y, Needham D, German C (1998) Mantle 3He in hydrothermal vents and plume of the lucky strike site (MAR 37°17′) and associated geothermal heat flux. Earth Planet Sci Lett 157:69–77

    Article  Google Scholar 

  • Ji GY, Jiang SH, Li GF, Yi JJ, Zhang LL, Liu YF (2021) Metallogenetic control of magmatism on the Maodeng Sn-Cu deposit in the Southern Great Xing’an Range: evidence from geochronology, geochemistry, and Sr-Nd-Pb isotopes. Geotecton Metallog 45:681–704 (in Chinese with English abstract)

    Google Scholar 

  • Jiang SY, Zhao KD, Jiang H, Su HM, Xiong SF, Xiong YQ, Xu YM, Zhang W, Zhu LY (2020) Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: an overview. China Sci Bull 65:3730–3745 (in Chinese with English abstract)

    Google Scholar 

  • Jochum KP, Hofmann AW, Ito E, Seufert HM, White WM (1983) K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306:431–436

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes (22° to 33°S latitude), in Skinner BJ, eds., Geology and Ore Deposits of the Central Andes. Soc Econ Geol Spec Publ 7:27–59

  • Ke LL, Zhang HY, Liu JJ, Zhai DG, Guo DH, Yang JK, Tan Q, Xu YW, Zhang M, Wang SG (2017) Fluid inclusion, H-O, S, Pb and noble gas isotope studies of the Aerhada Pb-Zn-Ag deposit, Inner Mongolia, NE China. Ore Geol Rev 88:304–316

    Article  Google Scholar 

  • Kendrick MA, Burnard P (2013) Noble gases and halogens in fluid inclusions: a journey through the Earth’s crust. In: Burnard P (ed) The noble gases as geochemical tracers. Springer, Berlin, pp 319–369

    Chapter  Google Scholar 

  • Kendrick MA, Burgess R, Harrison D, Bjorlykke A (2005) Noble gas and halogen evidence for the origin of Scandina sandstone-hosted Pb-Zn deposits. Geochim Cosmochim Acta 69:109–129

    Article  Google Scholar 

  • Kendrick MA, Honda M, Oliver NHS, Phillips D (2011) The noble gas systematics of late-orogenic H2O-CO2 fluids, Mt Isa, Australia. Geochim Cosmochim Acta 75:1428–1450

    Article  Google Scholar 

  • Kennedy BM, Hiyagon H, Reynolds JH (1991) Noble gases from Honduras geothermal sites. J Vocanol Geotherm Res 45:29–39

    Article  Google Scholar 

  • Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  Google Scholar 

  • Lages J, Rizzo AL, Aiuppa A, Samaniego P, Pennec JLL, Ceballos JA, Narváez A, Moussallam Y, Bani P, Schipper CI, Hidalgo S, Gaglio V, Alberti E, Sandoval-Velasquez A (2020) Noble gas magmatic signature of the Andean Northern Volcanic Zone from fluid inclusions in minerals. Chem Geol 559:119966

    Article  Google Scholar 

  • Lages J, Rizzo AL, Aiuppa A, Robidoux P, Aguilar R, Apaza F, Masias P (2021) Crustal controls on light noble gas isotope variability along the Andean volcanic arc. Geochem Perspect Let 19:45–49

    Article  Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Springer, Berlin, p 211

    Google Scholar 

  • Lehmann B (2004) Metallogeny of the Central Andes: geotectonic framework and geochemical evolution of porphyry systems in Bolivia and Chile during the last 40 Million years. In: Khanchuk AI, Gonevchuk GA, Mitrokhin AN, Simanenko LF, Cook NJ, Seltmann R (eds) Metallogeny of the Pacific Northwest: tectonics, magmatism and metallogeny of active continental margins. Vladivostok, Russia, pp 118–122

    Google Scholar 

  • Lehmann B (2021) Formation of tin ore deposits: a reassessment. Lithos 402–403:105756

    Article  Google Scholar 

  • Li PS, Boudreau AE (2019) Vapor transport of silver and gold in basaltic lava flows. Geology 47:877–880

    Article  Google Scholar 

  • Liao Z, Wang YW, Wang JB, Li HM, Long LL (2014) LA-MC-ICP-MS U-Pb dating of cassiterite from the Dajing tin polymetallic deposit, Inner Mongolia and its significance. Miner Depos 33:1–2 (in Chinese)

    Google Scholar 

  • Liu YQ (1996) Metallogenic zoning and origin of the Maodeng tin-copper deposit. Mineral Deposits 15:329–338 (in Chinese with English abstract)

    Google Scholar 

  • Liu YF, Jiang SH, Bagas L (2016) The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-Sn-W deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geol Rev 75:150–173

    Article  Google Scholar 

  • Liu X, Wang JB, Zhu XY, Sun YL, Jiang HY, Jiang BB, Wang H, Cheng XY (2017) Mineralization process of the Baiyinchagan tin polymetallic deposit in Inner Mongolia I: metallic mineral assemblage and metallogenic mechanism. Mineral Explor 8:967–980 (in Chinese with English abstract)

    Google Scholar 

  • Liu RL, Wu G, Chen GZ, Li TG, Jiang B, Wu LW, Zhang PC, Zhang T, Chen YC (2018) Characteristics of fluid inclusions and H-O-C-S-Pb isotopes of Weilasituo Sn-polymetallic deposit in southern Da Hinggan Mountains. Miner Depos 37:199–224 (in Chinese with English abstract)

    Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature 337:161–164

    Article  Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ, Thomson RE, Burd BJ, Butterfield DA, Embley RW, Cannon GA (1995) Variations in water-column 3He/heat ratios associated with the 1993 CoAxial event, Juan de Fuca Ridge. Geophys Res Lett 22:155–158

    Article  Google Scholar 

  • Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim Cosmochim Acta 51:1549–1560

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182

    Article  Google Scholar 

  • Mao JW, Cheng YB, Chen MH, Pirajno F (2013) Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Deposita 48:267–294

    Article  Google Scholar 

  • Mao JW, Xie GQ, Yuan SD, Liu P, Meng XY, Zhou ZH, Zheng W (2018) Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrol Sin 34:2501–2517

    Google Scholar 

  • Mao JW, Ouyang HG, Song SW, Santosh M, Yuan S, Zhou ZH, Zheng W, Liu H, Liu P, Cheng Y, Chen MH (2019) Geology and metallogeny of tungsten and tin deposits in China. Econ Geol 22:441–482

    Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Article  Google Scholar 

  • Mei W, Lv XB, Cao XF, Liu Z, Zhao Y, Ai ZL, Tang RK, Abfaua MM (2015) Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing’an Range: evidence from fluid inclusions and isotope analyses. Ore Geol Rev 64:239–252

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2013) A predictive model for metal transport of silver chloride by aqueous vapor in ore-forming magmatic-hydrothermal systems. Geochim Cosmochim Acta 104:123–135

    Article  Google Scholar 

  • Moreira M, Sarda P (2000) Noble gas constraints on degassing processes. Earth Planet Sci Lett 176:375–386

    Article  Google Scholar 

  • Moreira M, Kunz J, Allegre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Article  Google Scholar 

  • Newell DL, Jessup MJ, Hilton DR, Shaw CA, Hughes CA (2015) Mantle-derived helium in hot springs of the Cordillera Blanca, Peru: implications for mantle-to-crust fluid transfer in a flat-slab subduction setting. Chem Geol 417:200–209

    Article  Google Scholar 

  • O’Nions RK, Oxburgh ER (1983) Heat and helium in the Earth. Nature 306:429–431

    Article  Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral Geochem 16:491–559

    Google Scholar 

  • Ouyang HG, Mao JW, Santosh M, Zhou J, Zhou ZH, Wu Y, Hou L (2013) Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: perspectives from spatio-temporal distribution patterns of ore deposits. J Asian Earth Sci 78:222–236

    Article  Google Scholar 

  • Ouyang HG, Mao JW, Santosh M, Wu Y, Hou L, Wang XF (2014) The Early Cretaceous Weilasituo Zn-Cu-Ag vein deposit in the southern Great Xing’an Range, northeast China: fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geol Rev 56:503–515

    Article  Google Scholar 

  • Ouyang HG, Mao JW, Zhou ZH, Su HM (2015) Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Res 27:1153–1172

    Article  Google Scholar 

  • Poreda RJ, Arnórsson S (1992) Helium isotopes in Icelandic geothermal systems: II. Helium-Heat Relationships. Geochim Cosmochim Acta 56:4229–4235

    Article  Google Scholar 

  • Qin GJ, Kawachi Y, Zhao LQ, Wang YZ, Ou Q (2001) The Upper Permian sedimentary facies and its role in the Dajing Cu-Sn deposit, Linxi county, Inner Mongolia, China. Resour Geol 51:293–305

    Article  Google Scholar 

  • Ren H, Ouyang HG (2017) CO2 immiscibility and ore mineral precipitation in the Bairendaba silver-polymetallic deposit, Inner Mongolia. Earth Sci Front 24:151–158 (in Chinese with English abstract)

    Google Scholar 

  • Ruan BX, Lv XB, Yang W, Liu ST, Yu YM, Wu CM, Adam MMA (2015) Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China: implications for tectonic setting and metallogeny. Ore Geol Rev 71:121–137

    Article  Google Scholar 

  • Sandoval-Velasquez A, Rizzo AL, Frezzotti ML, Saucedo R, Aiuppa A (2021) The composition of fluids stored in the central Mexican lithospheric mantle: inferences from noble gases and CO2 in mantle xenoliths. Chem Geol 576:120270

    Article  Google Scholar 

  • Şengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Shao JA, Zhang FQ, Mu BL (1998) Tectono-thermal evolution of Mesozoic in the middle and southern part of the Great Hinggan Mountains. Sci China (Ser D: Earth Sci) 28:193–200

    Google Scholar 

  • Shao JA, Mu BL, Zhu HZ, Zhang LQ (2010) Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mts. Acta Petrol Sin 26:649–656 (in Chinese with English abstract)

    Google Scholar 

  • Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR, Tao H (2003) SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Sci Bull 48:2742–2748

    Article  Google Scholar 

  • Shu LS (2007) Genesis and lithospheric dynamics of late Mesozoic granites in Nanling area. Science Press, Beijing, pp 3–22 (in Chinese with English abstract)

    Google Scholar 

  • Shu QH, Lai Y, Sun Y, Wang C, Meng S (2013) Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: evidence from isotopes (S, Pb) and fluid inclusions. Econ Geol 108:835–860

    Article  Google Scholar 

  • Shu QH, Chang ZS, Hammerli J, Lai Y, Huizenga JM (2017) Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, Northeastern China: insights from laser ablation ICP-MS study of fluid inclusions. Econ Geol 112:1441–1460

    Article  Google Scholar 

  • Sillitoe RH (1974) Tin mineralisation above mantle hot spots. Nature 248:497–499

    Article  Google Scholar 

  • Sillitoe RH, Lehmann B (2022) Copper-rich tin deposits. Miner Deposita 57:1–11

    Article  Google Scholar 

  • Simmons SF, Sawkins FJ, Schlutter DJ (1987) Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature 329:429–432

    Article  Google Scholar 

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616

    Article  Google Scholar 

  • Stuart FM, Turner G, Duckworth RC, Fallick AE (1994) Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology 22:823–826

    Article  Google Scholar 

  • Stuart FM, Burnard PG, Taylor RP, Turner G (1995b) Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralisation, South Korea. Geochim Cosmochim Acta 59:4663–4673

    Article  Google Scholar 

  • Stuart FM, Harrop PJ, Knott R, Fallick AE, Fouquet Y, Turner G, Rickard D (1995a) Noble gas isotopes in 25,000 years of hydrothermal fluids from 13°N East Pacific Rise. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal Vents and Processes. Geol Soc Spec Publ, vol 87, pp 133–143

  • Tan J, Wei JH, He HY, Su F, Li YJ, Fu LB, Zhao SQ, Xiao GL, Zhang F, Xu JF, Liu Y, Stuart FM, Zhu RX (2018) Noble gases in pyrites from the Guocheng-Liaoshan gold belt in the Jiaodong province: evidence for a mantle source of gold. Chem Geol 480:105–115

    Article  Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Elsevier, Amsterdam, p 543

    Google Scholar 

  • Torgersen T, Kennedy BM, Hiyagon H (1989) Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth Planet Sci Lett 92:43–56

    Article  Google Scholar 

  • Turner G, Stuart FM (1992) Helium/heat ratios and deposition temperatures of sulphides from the ocean floor. Nature 357:581–583

    Article  Google Scholar 

  • Turner G, Burnard P, Ford JL, Gilmour JD, Lyon IC, Stuart FM (1993) Tracing fluid sources and interactions. Phil Trans R Soc Lond A 344:127–140

    Article  Google Scholar 

  • Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the Upper Mantle beneath Scotland. J Petrol 40:935–956

    Article  Google Scholar 

  • Wang BD, Niu SY, Sun AQ, Hu HB, Liu YM, Guo LJ, Wang S (2008) Helium-argon isotopic tracing for the Pb-Zn-Ag polymetallic ore deposits in the central-south segment of the Da Hinggan Ling Range. China J Geochem 27:235–241

    Article  Google Scholar 

  • Wang JB, Wang YW, Wang LJ, Uemoto T (2001) Tin-polymetallic mineralization in the southern part of the Da Hinggan Mountains, China. Resour Geol 51:283–291

    Article  Google Scholar 

  • Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY, Zhu RX (2006) Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett 251:179–198

    Article  Google Scholar 

  • Wang T, Zheng YD, Zhang JJ, Zeng LS, Donskaya T, Guo L, Li JB (2011) Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes. Tectonics 30:TC6007

    Article  Google Scholar 

  • Wang LJ, Wang JB, Wang YW, Long LL (2015) Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia. Acta Petrol Sin 31:991–1001 (in Chinese with English abstract)

    Google Scholar 

  • Wang FX, Bagas L, Jiang SH, Liu YF (2017) Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geol Rev 80:1206–1229

    Article  Google Scholar 

  • Wilde SA (2015) Final amalgamation of the Central Asian Orogenic Belt in NE China: paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—a review of the evidence. Tectonophysics 662:345–362

    Article  Google Scholar 

  • Wolf M, Romer RL, Franz L, Lopez-Moro FJ (2018) Tin in granitic melts: the role of melting temperature and protolith composition. Lithos 310–311:20–30

    Article  Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30

    Article  Google Scholar 

  • Wu LY, Hu RZ, Li XF, Stuart FM, Jiang GH, Qi YQ, Zhu JJ (2018) Mantle volatiles and heat contributions in high sulfidation epithermal deposit from the Zijinshan Cu-Au-Mo-Ag orefield, Fujian Province, China: evidence from He and Ar isotopes. Chem Geol 480:58–65

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY, Song DF (2018) Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Sci Rev 186:94–128

    Article  Google Scholar 

  • Xu JJ, Lai Y, Cui D, Chang Y, Jiang L, Shu QH, Li WB (2009) Characteristics and evolution of ore-forming fluids of the Daolundaba copper-polymetal deposit, Inner Mongolia. Acta Petrol Sin 25:2957–2972 (in Chinese with English abstract)

    Google Scholar 

  • Xu QH, Liu JQ, He HY, Zhang YH (2019) Nature and evolution of the lithospheric mantle revealed by water contents and He-Ar isotopes of peridotite xenoliths from Changbaishan and Longgang basalts in Northeast China. China Sci Bull 64:1325–1335

    Article  Google Scholar 

  • Yamamoto J, Nishimura K, Sugimoto T, Takemura K, Takahata N, Sano Y (2009) Diffusive fractionation of noble gases in mantle with magma channels: origin of low He/Ar in mantle-derived rocks. Earth Planet Sci Lett 280:167–174

    Article  Google Scholar 

  • Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZX, Song YC (2009) Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong. Tibet Ore Geol Rev 36:133–159

    Article  Google Scholar 

  • Yao L, Lü ZC, Ye TZ, Pang ZS, Jia HX, Zhang ZH, Wu YF, Li RH (2017) Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing’an Range, China. Acta Petrol Sin 33:3183–3199 (in Chinese with English abstract)

    Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

  • Zeng QD, Guo WK, He HY, Zhou LL, Cheng GH, Su F, Wang YB, Wang RT (2018) He, Ar, and S isotopic compositions and origin of giant porphyry Mo deposits in the Lesser Xing’an Range-Zhangguangcai Range metallogenic belt, northeast China. J Asian Earth Sci 165:228–240

    Article  Google Scholar 

  • Zhai DG, Liu JJ, Zhang AL, Sun YQ (2017) U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: implications for discrete mineralization events. Econ Geol 112:2041–2059

    Article  Google Scholar 

  • Zhai DG, Liu JJ, Zhang HY, Tombros S, Zhang AL (2018) A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit, Inner Mongolia, NE China: evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies. Ore Geol Rev 101:1–16

    Article  Google Scholar 

  • Zhai DG, Liu JJ, Cook NJ, Wang XL, Yang YQ, Zhang AL, Jiao YC (2019) Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China. Miner Deposita 54:47–66

    Article  Google Scholar 

  • Zhang DQ, Liu Y, Li DX (1993) Intrusive rocks related to the copper-polymetallic mineralization in the Daxinganling region. In: Zhang DQ, Zhao YM (eds) Symposium of the copper-polymetallic deposits in Daxinganling and adjacent areas. Earthquake Publishing House, Beijing, pp 50–64

    Google Scholar 

  • Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH, Liu XM (2008) Large-scale early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China. Lithos 102:138–157

    Article  Google Scholar 

  • Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA, Li M (2010) Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: implications for subduction-induced delamination. Chem Geol 276:144–165

    Article  Google Scholar 

  • Zhang WY, Nie FJ, Liu SW, Zuo LY, Yao XF, Jia DL, Liu JT (2015) Characteristics and genesis of mineral deposits in East Ujimqin Banner, western segment of the Great Xing’an Mountains, NE China. J Asian Earth Sci 97:459–471

    Article  Google Scholar 

  • Zhang PC, Peng B, Zhao J, Guo GF, Zuo YS, Xing YQ (2022) Genesis of the Bayan qagan dongshan Sn-Pb-Zn-Ag deposit, NE China, based on sphalerite chemistry and sulfur isotope. Ore Geol Rev 150:105124

    Article  Google Scholar 

  • Zhao GC, Wang YJ, Huang BC, Dong YP, Li SZ, Zhang GW, Yu S (2018) Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Sci Rev 186:262–286

    Article  Google Scholar 

  • Zhao PL, Zajacz Z, Tsay A, Yuan SD (2022) Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochim Cosmochim Acta 316:331–346

    Article  Google Scholar 

  • Zhou ZH, Mao JW (2022) Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range. Earth Sci Front 29:176–199 (in Chinese with English abstract)

    Google Scholar 

  • Zhou ZH, Wang AS, Li T (2011) Fluid inclusion characteristics and metallogenic mechanism of Huanggang Sn-Fe deposit in Inner Mongolia. Mineral Depos 30:867–889 (in Chinese with English abstract)

    Google Scholar 

  • Zhou ZH, Mao JW, Lyckberg P (2012) Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, Southern Great Hinggan Range, NE China: implication for their origin and tectonic setting. J Asian Earth Sci 49:272–286

    Article  Google Scholar 

  • Zhou ZH, Gao X, Ouyang HG, Liu J, Zhao JQ (2019) Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia. Mineral Depos 38:1004–1022 (in Chinese with English abstract)

    Google Scholar 

  • Zhou ZH, Mao JW, Zhao JQ, Gao X, Weyer S, Horn I, Holtz F, Sossi PA, Wang DC (2022) Tin isotopes as geochemical tracers of ore-forming processes with Sn mineralization. Am Mineral 107:2111–2127

    Article  Google Scholar 

Download references

Acknowledgements

We thank Antony Burnham for assistance in checking the English in an early version of the manuscript and for general advice. Feng Liu and Chao Duan are thanked for providing assistance during He–Ar isotope analyses of the ore minerals and valuable discussions. The authors would like to express their sincere gratitude to Bernd Lehmann (Editor-in-Chief), Nicolas J. Saintilan (Associate Editor), and reviewer Ray Burgess for all detailed and helpful remarks, as well as constructive comments, which have improved the quality of this paper substantially.

Funding

This work was financially supported by the Science & Technology Fundamental Resources Investigation Program (Grant No. 2022YF101900 and No. 2022YF101901), the CAGS Research Fund (Grant No. KK2208), and the National Natural Science Foundation of China (Grant No. 41772084).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualized, written, and illustrated by Zhenhua Zhou and Xinkai Chen; text modified and extended by Jingwen Mao, FM Stuart, and SA Wilde; material preparation, data collection and analysis, and methodology performed by Zhenhua Zhou, Xinkai Chen, and Xu Gao. Field-work and sample collection were completed by Hegen Ouyang, Xu Gao, and Jiaqi Zhao. All authors contributed to the interpretation of the data and read and approved the final manuscript.

Corresponding author

Correspondence to Zhenhua Zhou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

No consent required.

Consent for publication

No consent required.

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: N. J. Saintilan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Simplified geological map (a) and geological section along the A-A’ exploration line (b) of the Daolundaba deposit (modified after Chen et al. 2021). (PNG 967 kb)

High resolution image (TIF 2746 kb)

Supplementary Fig. 2

Sketch map of spatial distribution of main orebodies in the Weilasituo deposit (modified after Zhou et al. 2019). (PNG 335 kb)

High resolution image (TIF 954 kb)

Supplementary Fig. 3

(a) Geological section along exploration line 70 of no. I district at the Huanggang deposit. (b) Geological section along exploration line 418 of no. III district at the Huanggang deposit (modified after Mei et al. 2015). (PNG 491 kb)

High resolution image (TIF 1418 kb)

Supplementary Fig. 4

Compilation of S-Pb isotopes of Sn and Pb-Zn-Ag deposits in the SGXR. The S-Pb isotope data and sources are summarized in Supplementary Table 3. The S-Pb isotopic compositions of sulfide ores are mostly close to that of the ore-related granites, but the S isotopes of ores from Sn deposits shows a wider and more variable range than that of the ore-related granites, suggesting mixed sources. (PNG 401 kb)

High resolution image (TIF 1410 kb)

Supplementary Table 1

(XLSX 24 kb)

Supplementary Table 2

(XLSX 31 kb)

Supplementary Table 3

(XLSX 36 kb)

ESM 1

(XLSX 17 kb)

ESM 2

(DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Mao, J., Stuart, F.M. et al. The role of mantle melting in granite-associated hydrothermal systems: He–Ar isotopes in fluids responsible for Sn–Ag–Pb–Zn mineralization in northeast China. Miner Deposita 58, 1421–1443 (2023). https://doi.org/10.1007/s00126-023-01186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01186-8

Keywords

Navigation