Skip to main content
Log in

An EPR and SQUID magnetometry study of bornite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A magnetic and spectroscopic characterisation has been performed on a natural bornite sample from the Natural History Museum of the University of Florence. The combination of magnetic measurements and continuous-wave electron paramagnetic resonance (cw-EPR) spectroscopy at different temperatures and frequencies provided information about the distribution and valence states of Cu and Fe in bornite. The studied sample was found to obey the Curie–Weiss law with a transition from a paramagnetic to an antiferromagnetic phase at 64 K; its possible attribution to a disordered spin glass phase was ruled out by ac susceptibility measurements. Q- and X-band cw-EPR measurements confirmed the presence of Fe(III) as fundamental valence state in bornite: the single EPR line registered in the temperature range from 300 to 65 K can be assigned, in fact, to the Fe(III) single ions. Some Cu(II) signals were revealed in the low temperature EPR spectra and attributed to an early stage of the surface alteration. The width of the Fe(III) EPR spectrum, which hinders any characteristic spectral structure, can be ascribed to the exchange interaction. The pure antiferromagnetic character of the magnetic transition confirms the ordering between Fe and Cu in the bornite structure, at least at low temperature (≤70 K). Moreover, the relatively high Nèel temperature suggests the accepted model of Collins et al.’s (Can J Phys 59:535–539, 1981) to conveniently explain the overall magnetic properties in the range 298–4 K. Despite the increasing of the susceptibility in the paramagnetic range, in fact, the integrated EPR line area decreases by lowering the temperature, thus suggesting a progressive rising of the antiferromagnetic interactions among next-nearest-neighbouring paramagnetic centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  • Bente K (1987) Stabilization of Cu–Fe–Bi–Pb–Sn-Sulfides. Mineral Petrol 36:205–217

    Article  Google Scholar 

  • Bernardini GP, Borgheresi M, Cipriani C, Di Benedetto F, Romanelli M (2004) Mn distribution in sphalerite: an EPR study. Phys Chem Minerals 31:80–84

    Article  Google Scholar 

  • Bhagat SM, Spano ML, Lloyd JN (1981) Unified description for the effect of spin freezing on ESR linewidth. Solid State Commun 38:261–265

    Article  Google Scholar 

  • Borgheresi M, Bernardini GP, Cipriani C, Di Benedetto F, Romanelli M (2005) Electron paramagnetic resonance and electron spin echo spectroscopy study of natural bornite. Mineral Petrol 85:3–18

    Article  Google Scholar 

  • Brett R, Yund RA (1964) Sulphur-rich bornites. Am Mineral 49:1084–1098

    Google Scholar 

  • Caneschi A, Cipriani C, Di Benedetto F, Sessoli R (2004) Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite. Phys Chem Minerals 31:190–193

    Article  Google Scholar 

  • Carbone C, Di Benedetto F, Marescotti P, Sangregorio C, Sorace L, Lima N, Romanelli M, Lucchetti G, Cipriani C (2005) Natural Fe-oxide and -oxyhydroxide nanoparticles: an EPR and SQUID investigation. Mineral Petrol 85:19–32

    Article  Google Scholar 

  • Cipriani C, Pratesi G (1996) Le borniti delle collezioni del Museo di Mineralogia dell’Università di Firenze: indagini paragenetiche, analisi composizionali e determinazioni diffrattometriche. Museol Sci XIII:367–378

    Google Scholar 

  • Cipriani C, Giannini L, Trosti-Ferroni R (1980) Le collezioni del Museo di Mineralogia di Firenze II: le borniti. Rend SIMP 36:141–158

    Google Scholar 

  • Collins MF, Longworth G, Townsend MG (1981) Magnetic structure of bornite, Cu5FeS4. Can J Phys 59:535–539

    Google Scholar 

  • Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005a) 57Fe- and 119Sn- Mössbauer study on stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution. Phys Chem Miner 31:683–690

    Article  Google Scholar 

  • Di Benedetto F, Bernardini GP, Cipriani C, Emiliani C, Gatteschi D, Romanelli M (2005b) The distribution of Cu(II) and the magnetic properties of the synthetic analogue of tetrahedrite: Cu12Sb4S13. Phys Chem Miner 32:155–164

    Article  Google Scholar 

  • Ding Y, Veblen DR, Prewitt CT (2005a) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. Am Mineral 90(8–9):1256–1264

    Article  Google Scholar 

  • Ding Y, Veblen DR, Prewitt CT (2005b) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4). Am Mineral 90(8–9):1265–1269

    Article  Google Scholar 

  • Fries T, Shapira Y, Palacio F, Moron MC, McIntyre GJ, Kershaw R, Wold A, McNiff Jr EJ (1997) Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetisation and neutron-scattering measurements. Phys Rev B 56(9):5424–5431

    Article  Google Scholar 

  • Glerup J, Weihe H (1991) Magnetic-susceptibility and EPR-spectra of mu-cyano-bis[pentaamminechromium(III)] perchlorate. Acta Chem Scand 45:444–448

    Article  Google Scholar 

  • Goodman BA, Raynor JB (1970) Electron spin resonance of transition metal complexes. In: Emelens HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry, vol 13, pp 135–361

  • Grguric BA, Putnis A (1999) Rapid exsolution behaviour in the bornite-digenite series, and implications for natural ore assemblages. Mineral Mag 63(1):1–12

    Google Scholar 

  • Grguric BA, Putnis A, Harrison RJ (1998) An investigation of the phase transitions in bornite (Cu5FeS4) using neutron diffraction and differential scanning calorimetry. Am Mineral 83:1231–1239

    Google Scholar 

  • Hendrich MP, Münck E, Fox BG, Lipscomb JD (1990) Integer-spin EPR studies of the fully reduced methane monooxygenase hydroxylase component. J Am Chem Soc 112:5861–5865

    Article  Google Scholar 

  • Huber DL (1972) Critical-point anomalies in the electron-paramagnetic-resonance linewidth and in the zero-field time of antiferromagnets. Phys Rev B 6(9):3180–3186

    Article  Google Scholar 

  • Jagadeesh MS, Nagarathna HM, Montano PA, Seehra MS (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite (Cu4.5Fe1.2S4.7). Phys Rev B 23(5):2350–2356

    Article  Google Scholar 

  • Jonason K, Vincent E, Hammann J, Bouchard JP, Nordblad P (1988) Memory and chaos effect in spin glasses. Phys Rev Lett 81(15):1119–1130

    Google Scholar 

  • Kanazawa Y, Koto K, Morimoto N (1978) Bornite Cu5FeS4: stability and crystal structure of the intermediate form. Can Mineral 16:397–404

    Google Scholar 

  • Koto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Cryst B31:2268–2273

    Google Scholar 

  • Midollini S, Oriandini A, Rosa P, Sorace L (2005) Structure and magnetism of a new hydrogen-bonded layered cobalt(II) network, constructed by the unprecedented carboxylate-phosphinate ligand [O-2(C6H5)PCH2CO2](2−). Inorg Chem 44(6):2060–2066

    Article  Google Scholar 

  • Mikhlin Y, Tomashevich Y, Tauson V, Vyalikh D, Molodtsov S, Szargan R (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectrosc Relat Phenom 142(1):83–88

    Article  Google Scholar 

  • Morimoto N (1964) Structures of two polymorphic forms of Cu5FeS4. Acta Cryst 17:351–360

    Article  Google Scholar 

  • Morrish AH (1966) The physical principles of magnetism. Wiley, New York

    Google Scholar 

  • Nkoma JS, Ekosse G (1999) X-ray diffraction study of chalcopyrite CuFeS2, pentlandite (Fe, Ni)9S8 and pyrrhotite Fe1−x S obtained from Cu–Ni ore bodies. J Phys Condens Matter 11:121–128

    Article  Google Scholar 

  • Oak HN, Baek KS, Jo Y (1996) Superparamagnetic relaxation in Cu5FeS4. Solid State Commun 100(7):467–470

    Article  Google Scholar 

  • Oseroff SB (1982) Magnetic and susceptibility and EPR measurements in concentrated spin-glasses: Cd1−x Mn x Te and Cd1−x Mn x Se. Phys Rev B 25(11):6584–6594

    Article  Google Scholar 

  • Pattrick RAD, Van der Laan G, Charnock JM, Grguric BA (2004) Cu L-α X ray absorption spectroscopy and the electronic structure of minerals: spectral variations in non stoichiometric bornites, Cu5FeS4. Am Mineral 89:541–546

    Google Scholar 

  • Peisach J, Blumberg WD (1974) Analysis of EPR copper; structural implications derived from the analysis of EPR spectra of natural and artificial Cu-proteins. Arch Biochem Biophys 165:691–708

    Article  Google Scholar 

  • Pratesi G, Cipriani C (2000) Selective depth analyses of the alteration products of bornite, Chalcopyrite and pyrite performed by XPS, AES, RBS. Eur J Mineral 12:397–409

    Google Scholar 

  • Samarth N, Furdyna JK (1988) A proposed interpretation of the EPR linewidth in diluted magnetic semiconductors. Solid State Commun 65:801–804

    Article  Google Scholar 

  • Soskic Z, Babic Stojic B, Stojic M (1994) Electron paramagnetic resonance studies of Zn1−x Mn x Te. J Phys Condens Matter 6:1261–1268

    Article  Google Scholar 

  • Spalek J, Lewicki A, Tarnawski Z, Furdyna JK, Galazka RR, Obuszko Z (1986) Magnetic susceptivity of semimagnetic semiconductors: the high-temperature regime and the role of super exchange. Phys Rev B 33:3407–3418

    Article  Google Scholar 

  • Takeno S, Masumoto K, Kamigaichi T (1968) Electric and magnetic properties of bornite Cu5FeS4—with a review of the physical properties of Cu–Fe–S minerals. J Sci Hiroshima Univ Ser C 5:321–332

    Google Scholar 

  • Townsend MG, Gosselin JR, Tremblay RJ, Ripley LG, Carson DW, Muir WB (1977) A magnetic and Mössbauer study of magnetic ordering and vacancy clustering. J Phys Chem Solids 38:1153–1159

    Article  Google Scholar 

  • Van der Laan G, Pattrick RAD, Charnock JM, Grguric BA (2002) Cu L-2, L-3 X-ray absorption and the electronic structure of nonstoichiometric Cu5FeS4. Phys Rev B 6604:135–139

    Google Scholar 

  • Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. Proc 24th IGC, Montreal, vol 14, pp 158–167

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulphides. Cambridge University Press, London, pp 494

  • Webb DJ, Bhagat SM, Furdyna JK (1984) Electron paramagnetic resonance linewidths in diluted magnetic semiconductors: Cd1−xMnxTe. J Appl Phys 55(6):2310–2312

    Article  Google Scholar 

  • Yund RA, Kullerud G (1966) Thermal stability of assemblages in the Cu–Fe–S system. J Petrol 7:454–488

    Google Scholar 

Download references

Acknowledgments

The authors want to express their warmest thanks to G.P. Bernardini for the useful and stimulating discussion. The authors are also indebted to G. Amthauer of the University of Salzburg for his critical discussion of the present results. An anonymous referee and P. Sainctavit are sincerely acknowledged for their revision of the text and for the stimulating comments. The financial support of MIUR, Ente Cassa di Risparmio di Firenze and CSGI is grateful acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Borgheresi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgheresi, M., Di Benedetto, F., Caneschi, A. et al. An EPR and SQUID magnetometry study of bornite. Phys Chem Minerals 34, 609–619 (2007). https://doi.org/10.1007/s00269-007-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0175-5

Keywords

Navigation