Skip to main content
Log in

On the relationship between magnetic moment and nuclear magnetic hyperfine field of 57Fe

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The relationship between the internal magnetic hyperfine field, Bhf, and the measured magnetic moment of Fe, μFe, has long been a challenge in Mössbauer spectroscopy, nuclear physics and materials science. In many publications, it has been reported that Bhf and μFe are proportional. In contrast, in the present work, it will be shown that the macroscopic measured magnetic moment by methods such as SQUID is the sum of the magnetic moment of delocalized electrons with 3d-character, μ3d, and the moment of electrons with sp-character, μsp. The sp. moment is, however, less significant for the arising of magnetic hyperfine field. Therefore, the direct relation of measured magnetic moment to magnetic hyperfine field of Fe leads to inaccurate interpretations. Instead, it can be shown that Bhf is associated with μ3d. The constant of proportionality, frequently used in Mössbauer spectroscopy, is typically determined from the relationship between measured values of the magnetic moment and the hyperfine fields. Based on the present findings, the constant of proportionality is the results of the relationship between Bhf and the delocalized magnetic moment, μ3d, which is different from the measured magnetic moment. The use of the correct constant of proportionality relating Bhf to the magnetic moment allows the separation of μ3d and μsp. In the present work, this relationship has been studied for crystalline Fe, amorphous Fe90Sc10 and (Fe100-xCoX)90Sc10 alloys, prepared as homogeneous structures or in the form of heterogeneous nanoglass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curie, P.: Propriétés magnétiques des corps à diverses températures Proprietes. Annales de Chimie et de physique. 7(5), 289–405 (1895)

    Google Scholar 

  2. Langevin, P.: Magnetisme et theorie des electrons. Annales de Chimie. et. de Physique. 8(5), 70–127 (1905) https://hal.archives-ouvertes.fr/jpa-00241050

    MATH  Google Scholar 

  3. Weiss, P.: L'hypothèse du champ moléculaire et la propriété ferromagnétique. Phys. Theor. Appl. 6, 661–690 (1907). https://doi.org/10.1051/jphystap:019070060066100

    Article  MATH  Google Scholar 

  4. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Physik. 49(9), 619–636 (1928). https://doi.org/10.1007/BF01328601

    Article  MATH  ADS  Google Scholar 

  5. Brillouin, L.: Les moments de rotation et le magnétisme dans la mécanique condulatoire. J. Phys. Radium. 8, 74–84 (1927). https://doi.org/10.1051/jphysrad:019270080207400

    Article  MATH  Google Scholar 

  6. Stoner, E.C.: Collective electron ferromagnetism. Proc. R. Soc. Lond. Ser. A. 165, 372–414 (1938). https://doi.org/10.1098/rspa.1938.0066

    Article  MATH  ADS  Google Scholar 

  7. Hanna, S.S., Heberle, J., Littlejohn, C., Perlow, G.J., Preston, R.S., Vincent, D.H.: Observations on the Mössbauer effect in Fe57. Phys. Rev. Lett. 4, 28–29 (1960). https://doi.org/10.1103/PhysRevLett.4.28

    Article  ADS  Google Scholar 

  8. Nagle, D.E., Frauenfelder, H., Taylor, R.D., Cochran, R.F., Matthias, T.B.: Temperature dependence of the internal field in ferromagnets. Phys. Rev. Lett. 5, 364–365 (1960). https://doi.org/10.1103/PhysRevLett.5.364

    Article  ADS  Google Scholar 

  9. Preston, R.S., Hanna, S.S., Heberle, J.: Mössbauer effect in metallic iron. Phys. Rev. 128, 2207–2218 (1962). https://doi.org/10.1103/PhysRev.128.2207

    Article  ADS  Google Scholar 

  10. Watson, R.E., Freeman, A.J.: Origin of effective fields in magnetic materials. Phys. Rev. 123, 2027–2047 (1961). https://doi.org/10.1103/PhysRev.123.2027

    Article  ADS  Google Scholar 

  11. Stearns, M.B., Wilson, S.S.: Measurements of the conduction-electron spin-density oscillations in ferromagnetic alloys. Phys. Rev. Lett. 13, 313–315 (1964). https://doi.org/10.1103/PhysRevLett.13.313

    Article  ADS  Google Scholar 

  12. Lines, M.E.: Hyperfine fields in iron-metalloid ferromagnetic metals. Solid State Commun. 36, 457–460 (1980). https://doi.org/10.1016/0038-1098(80)90933-3

    Article  ADS  Google Scholar 

  13. Stoesser, A., Ghafari, M., Kilmametov, A., Gleiter, H., Sakurai, Y., Itou, M., Kohara, S., Hahn, H., Kamali, S.: Influence of interface on structure and magnetic properties of Fe50B50 nanoglass. J. Appl. Phys. 116, 134305-1-7 (2014). https://doi.org/10.1063/1.4897153

    Article  ADS  Google Scholar 

  14. Stearns, M.B.: Itinerant-3d-electron-spin-density oscillations surrounding solute atoms in Fe. Phys. Rev. B13, 1183–1197 (1976). https://doi.org/10.1103/PhysRevB.13.1183

    Article  ADS  Google Scholar 

  15. Publications concerning the relation between magnetic moment and hyperfine fields are available at : Mössbauer effect data center: http://www.medc.dicp.ac.cn (2021).

  16. Novák, P., Chlan, V.: Contact hyperfine field at Fe nuclei from density functional calculations. Phys. Rev. B. 81, 174412-1-7 (2010). https://doi.org/10.1103/PhysRevB.81.174412

    Article  ADS  Google Scholar 

  17. Blügel, S., Akai, H., Zeller, R., Dederichs, P.H.: Hyperfine fields of 3d and 4d impurities in nickel. Phys. Rev. B35, 3271–3283 (1987). https://doi.org/10.1103/PhysRevB.35.3271

    Article  ADS  Google Scholar 

  18. Guo, G.Y., Ebert, H.: First principles study of the magnetic hyperfine field in Fe and Co multilayers. Phys. Rev. B53, 2492–2503 (1996). https://doi.org/10.1103/PhysRevB.53.2492

    Article  ADS  Google Scholar 

  19. Dubiel, S.M.: Relationship between the magnetic hyperfine field and the magnetic moment. J. Alloys Compd. 488, 18–22 (2009). https://doi.org/10.1016/j.jallcom.2009.08.101

    Article  Google Scholar 

  20. Fang, Y.N., Hahn, H., Kobe, S., Witte, R., Singh, S.P., Feng, T., Ghafari, M.: Modifying the transition temperature, 120 K ≤ Tc ≤ 1150 K, of amorphous Fe90−xCoxSc10 with simultaneous alteration of fluctuation of exchange integral up to zero. Sci. Rep. 9(412), 36891 (2019). https://doi.org/10.1038/s41598-018-36891-2

    Article  Google Scholar 

  21. Day, R.K., Dunlop, J.B., Foley, C.P., Ghafari, M., Pask, H.: Preparation and Mossbauer study of a new Fe-rich amorphous alloy, Fe90Sc10. Solid State Commun. 56, 843–845 (1985). https://doi.org/10.1016/0038-1098(85)90417-X

    Article  ADS  Google Scholar 

  22. Jing, J., Kramer, A., Birringer, R., Gleiter, H., Gonser, U.: Modified atomic structure in a Pd-Fe-Si nanoglass – A Mossbauer study. J. Non- Cryst. Solids. 113, 167–170 (1989). https://doi.org/10.1016/0022-3093(89)90007-0

    Article  ADS  Google Scholar 

  23. Ghafari, M., Hahn, H., Gleiter, H., Sakurai, Y., Itou, M., Kamali, S.: Evidence of itinerant magnetism in a metallic nanoglass. Appl. Phys. Lett. 101, 243104–243108 (2012). https://doi.org/10.1063/1.4769816

    Article  ADS  Google Scholar 

  24. Ghafari, M., Kohara, S., Hahn, H., Gleiter, H., Feng, T., Witte, R., Kamali, S.: Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction. Appl. Phys. Lett. 100, 133111–133114 (2012). https://doi.org/10.1063/1.3699228

    Article  ADS  Google Scholar 

  25. Ghafari, M., Sakurai, Y., Peng, G., Fang, Y.N., Feng, T., Hahn, H., Gleiter, H., Itou, M., Kamali, S.: Unexpected magnetic behavior in amorphous Co90Sc10 alloy. Appl. Phys. Lett. 107, 132406 (2015). https://doi.org/10.1063/1.4932113

    Article  ADS  Google Scholar 

  26. Schwartz, K., Mohn, P., Blaha, P., Kubler, J.: Electronic and magnetic structure of BCC Fe-Co alloys from band theory. J. Phys. F: Met. Phys. 14, 2659–2671 (1984). https://doi.org/10.1088/0305-4608/14/11/021

    Article  ADS  Google Scholar 

  27. Sakai, N., Ono, K.: Compton profile due to magnetic electrons in ferromagnetic iron measured with circularly polarized γ rays. Phys. Rev. Lett. 37, 351–353 (1976). https://doi.org/10.1103/PhysRevLett.37.351

    Article  ADS  Google Scholar 

  28. Cooper, M.J.: Magnetic compton scattering with circularly polarized synchrotron radiation. Physica B: Cond. Matter. 159(2), 137–142 (1989). https://doi.org/10.1016/0921-4526(89)90030-6

    Article  ADS  Google Scholar 

  29. Cooper, M.J., Shenton, C., Duffy, J.A., Steer, C.A., Blaauw, L.V.: A short history of magnetic Compton scattering. J. NIMA. 580(1), 1–7 (2007). https://doi.org/10.1016/j.nima.2007.05.010

    Article  ADS  Google Scholar 

  30. Cooper, M.L., Mijnarends, P.E., Sakai, N., Bansil, A.: X-ray Compton Scattering, Oxford Science Publications, pp 269–70, 293 (2004). Sections: 7.12, 9.31, 293, 10.1, 10.3

  31. Ghafari, M., Gleiter, H., Feng, T., Ohara, K., Hahn, H.: Are transition metal-rich metallic glasses made up of distorted bcc clusters? J. Mater. Sci. Eng. 5(6), 1000299-1-4 (2016). https://doi.org/10.4172/2169-0022.1000299

    Article  Google Scholar 

  32. Ghafari, M., Louzguine-Luzgin, D.V., Hutchison, W.D., Feng, T., Campbell, S.J.: Wave nature of conduction electrons in amorphous Co90Sc10 and Fe90Sc10 alloys. Journal of Physics -Condens Matter. 30, 455701 (2018). https://doi.org/10.1088/1361-648X/aae505

    Article  ADS  Google Scholar 

  33. Ghafari, M., Gomez Escoto, R.: Magnetic properties of amorphous alloys. Hyperfine Interact. 110, 51–80 (1997). https://doi.org/10.1023/A:1012627500457

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51520105001, 51571119) and the Fundamental Research Funds for the Central Universities (No. 30919011404). T.F. acknowledges the support from Qing Lan project and the distinguished professor project of Jiangsu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghafari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME), originally planned to be held in 2020 in Olomouc, Czech Republic, but postponed due to the corona-pandemic

Edited by Libor Machala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, M., Hahn, H., Feng, T. et al. On the relationship between magnetic moment and nuclear magnetic hyperfine field of 57Fe. Hyperfine Interact 242, 2 (2021). https://doi.org/10.1007/s10751-021-01725-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01725-7

Keywords

Navigation