Skip to main content

Advertisement

Log in

Could a three-dimensional contralateral meniscus segmentation for allograft or scaffold sizing be possible? A prospective study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Meniscal allografts and biodegradable meniscal implants are attractive surgical options for painful subtotal or total meniscectomies. In order to get the best results, these should be as similar as possible to the original meniscus in terms of shape, structure, and volume. Three-dimensional meniscus sizing could be an approach to improve the accuracy of meniscus matching. Therefore, the aims of this study were to perform a comparative morphological and volumetric analysis of the healthy meniscus based on manual tri-planar segmentation and to demonstrate that the menisci from the contralateral knee could be used as a reference in the sizing of a meniscal graft or a scaffold.

Methods

Three-dimensional meniscal models were created based on 120 MRIs in 60 healthy subjects (bilateral knees). The differences between the pairs of menisci concerning the widths, thicknesses, lateromedial distances, anteroposterior distances, angles of coverage, and meniscal volumes were evaluated. T-Student tests were used to compare the quantitative numerical variables of the different groups. Pearson’s linear regression was used to determine if correlations existed between demographic variables (age, gender, height, weight) and anatomical parameters. Statistical significance was set at p < 0.05.

Results

Comparing the 120 pairs of menisci of each subject, there was no statistically significant difference for all parameters studied for both the medial and lateral meniscus. When the measurements were stratified by gender, statistically significant differences were observed for all parameters except meniscal coverage angles. We observed that anteroposterior and lateromedial distances were positively correlated with height and body mass index both at the level of the medial meniscus (r = 0.68; r = 0.66; r = 0.65; and r = 0.63) and lateral (r = 0.68; r = 0.69; r = 0.61; and r = 0.60).

Conclusion

Our study demonstrated that the intra-individual 3D shapes of the left and right menisci are very similar. Therefore, the contralateral side could be used as a template for the 3D sizing of meniscal allografts or meniscal implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Toanen C, Dhollander A, Bulgheroni P et al (2020) Polyurethane meniscal scaffold for the treatment of partial meniscal deficiency: 5-year follow-up outcomes: a European multicentric study. Am J Sports Med 48:1347–1355. https://doi.org/10.1177/0363546520913528

    Article  PubMed  Google Scholar 

  2. Beaufils P, Becker R, Kopf S et al (2017) Surgical management of degenerative meniscus lesions: the 2016 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 25:335–346. https://doi.org/10.1007/s00167-016-4407-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kopf S, Beaufils P, Hirschmann MT et al (2020) Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 28:1177–1194. https://doi.org/10.1007/s00167-020-05847-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pujol N, Beaufils P (2019) Save the meniscus again! Knee Surg Sports Traumatol Arthrosc 27:341–342. https://doi.org/10.1007/s00167-018-5325-4

    Article  PubMed  Google Scholar 

  5. Espejo-Reina A, Aguilera J, Espejo-Reina MJ et al (2019) One-third of meniscal tears are repairable: an epidemiological study evaluating meniscal tear patterns in stable and unstable knees. Arthrosc J Arthrosc Relat Surg 35:857–863. https://doi.org/10.1016/j.arthro.2018.08.051

    Article  Google Scholar 

  6. Kamatsuki Y, Furumatsu T, Hiranaka T et al (2023) Epidemiological features of acute medial meniscus posterior root tears. Int Orthop. https://doi.org/10.1007/s00264-023-05848-0

  7. Lucidi GA, Grassi A, BbH A-z’b et al (2021) Satisfactory clinical results and low failure rate of medial collagen meniscus implant (CMI) at a minimum 20 years of follow-up. Knee Surg Sports Traumatol Arthrosc 29:4270–4277. https://doi.org/10.1007/s00167-021-06556-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barlow T, Coco V, Shivji F et al (2022) Patient-reported outcome and survival following meniscal allograft transplantation: an international case series. Bone Jt J 104:657–662. https://doi.org/10.1302/0301-620X.104B6.BJJ-2021-0944.R2

    Article  Google Scholar 

  9. Bakowski P, Mieloch AA, Porzucek F et al (2023) Meniscus repair via collagen matrix wrapping and bone marrow injection: clinical and biomolecular study. Int Orthop. https://doi.org/10.1007/s00264-023-05711-2

  10. Zaffagnini S, Di Paolo S, Stefanelli F et al (2019) The biomechanical role of meniscal allograft transplantation and preliminary in-vivo kinematic evaluation. J Exp Orthop 6:27. https://doi.org/10.1186/s40634-019-0196-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaleka CC, Netto AS, Silva JCA et al (2016) Which are the most reliable methods of predicting the meniscal size for transplantation? Am J Sports Med 44:2876–2883. https://doi.org/10.1177/0363546516653203

    Article  PubMed  Google Scholar 

  12. Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthrosc J Arthrosc Relat Surg 11:684–687. https://doi.org/10.1016/0749-8063(95)90110-8

    Article  CAS  Google Scholar 

  13. Beeler S, Jud L, von Atzigen M et al (2020) Three-dimensional meniscus allograft sizing—a study of 280 healthy menisci. J Orthop Surg 15:74. https://doi.org/10.1186/s13018-020-01591-z

    Article  Google Scholar 

  14. Beeler S, Vlachopoulos L, Jud L et al (2019) Contralateral MRI scan can be used reliably for three-dimensional meniscus sizing — retrospective analysis of 160 healthy menisci. The Knee 26:954–961. https://doi.org/10.1016/j.knee.2019.06.017

    Article  PubMed  Google Scholar 

  15. Bowers ME, Tung GA, Fleming BC et al (2007) Quantification of meniscal volume by segmentation of 3T magnetic resonance images. J Biomech 40:2811–2815. https://doi.org/10.1016/j.jbiomech.2007.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  16. Getgood A, LaPrade RF, Verdonk P et al (2017) International Meniscus Reconstruction Experts Forum (IMREF) 2015 consensus statement on the practice of meniscal allograft transplantation. Am J Sports Med 45:1195–1205. https://doi.org/10.1177/0363546516660064

    Article  PubMed  Google Scholar 

  17. Stone KR, Freyer A, Turek T et al (2007) Meniscal sizing based on gender, height, and weight. Arthrosc J Arthrosc Relat Surg 23:503–508. https://doi.org/10.1016/j.arthro.2006.12.025

    Article  Google Scholar 

  18. Wirth W, Frobell RB, Souza RB et al (2010) A three-dimensional quantitative method to measure meniscus shape, position, and signal intensity using MR images: a pilot study and preliminary results in knee osteoarthritis. Magn Reson Med 63:1162–1171. https://doi.org/10.1002/mrm.22380

    Article  PubMed  Google Scholar 

  19. Lim D, Han Lee Y, Kim S et al (2016) Clinical value of fat-suppressed 3D volume isotropic spin-echo (VISTA) sequence compared to 2D sequence in evaluating internal structures of the knee. Acta Radiol 57:66–73. https://doi.org/10.1177/0284185114567560

    Article  PubMed  Google Scholar 

  20. El-Liethy NE, Rashwan AS, Kamal H (2020) Single isotropic 3D fast spin echo sequence compared with conventional 2D sequences for detecting meniscal and cruciate ligament tears in the knee. Egypt J Radiol Nucl Med 51:258. https://doi.org/10.1186/s43055-020-00362-4

    Article  Google Scholar 

  21. Van Thiel GS, Verma N, Yanke A et al (2009) Meniscal allograft size can be predicted by height, weight, and gender. Arthrosc J Arthrosc Relat Surg 25:722–727. https://doi.org/10.1016/j.arthro.2009.01.004

    Article  Google Scholar 

  22. Wadhwa V, Omar H, Coyner K et al (2016) ISAKOS classification of meniscal tears—illustration on 2D and 3D isotropic spin echo MR imaging. Eur J Radiol 85:15–24. https://doi.org/10.1016/j.ejrad.2015.10.022

    Article  PubMed  Google Scholar 

  23. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shen X, Zuo J, Li Z et al (2020) Morphological analysis of normal meniscus on magnetic resonance imaging (MRI)-based three-dimensional reconstruction models in healthy Chinese adults. Med Sci Monit 26. https://doi.org/10.12659/MSM.927101

  25. Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193:161–178. https://doi.org/10.1046/j.1469-7580.1998.19320161.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koh J, Zaffagnini S, Kuroda R et al (2021) Orthopaedic biomechanics in sports medicine. Springer International Publishing, Cham

    Book  Google Scholar 

  27. Wenger A, Wirth W, Hudelmaier M et al (2013) Meniscus body position, size, and shape in persons with and persons without radiographic knee osteoarthritis: quantitative analyses of knee magnetic resonance images from the osteoarthritis initiative: meniscus position, size, and shape in OA. Arthritis Rheum 65:1804–1811. https://doi.org/10.1002/art.37947

    Article  PubMed  Google Scholar 

  28. Erbagci H, Gumusburun E, Bayram M et al (2004) The normal menisci: in vivo MRI measurements. Surg Radiol Anat 26:28–32. https://doi.org/10.1007/s00276-003-0182-2

    Article  CAS  PubMed  Google Scholar 

  29. A dos N, Kaleka CC S, Toma MK et al (2018) Should the meniscal height be considered for preoperative sizing in meniscal transplantation? Knee Surg Sports Traumatol Arthrosc 26:772–780. https://doi.org/10.1007/s00167-017-4461-6

    Article  Google Scholar 

  30. Samitier G, Alentorn-Geli E, Taylor DC et al (2015) Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc 23:310–322. https://doi.org/10.1007/s00167-014-3334-5

    Article  PubMed  Google Scholar 

  31. Yoon JP, Chang CB, Yoo JH et al (2010) Correlation of magnetic resonance imaging findings with the chronicity of an anterior cruciate ligament tear. J Bone Jt Surg 92:353–360. https://doi.org/10.2106/JBJS.I.00031

    Article  Google Scholar 

  32. Beeler S, Vlachopoulos L, Jud L et al (2020) Meniscus sizing using three-dimensional models of the ipsilateral tibia plateau based on CT scans – an experimental study of a new sizing approach. J Exp Orthop 7:36. https://doi.org/10.1186/s40634-020-00252-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tack A, Mukhopadhyay A, Zachow S (2018) Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 26:680–688. https://doi.org/10.1016/j.joca.2018.02.907

    Article  CAS  PubMed  Google Scholar 

  34. Zhen T, Fang J, Hu D et al (2023) Risk stratification by nomogram of deep learning radiomics based on multiparametric magnetic resonance imaging in knee meniscus injury. Int Orthop. https://doi.org/10.1007/s00264-023-05875-x

Download references

Acknowledgements

I want to thank Mr. Charles Jauniau and his team for their availability and help in acquiring MRI data.

Author information

Authors and Affiliations

Authors

Contributions

J.V. has been involved in the conception, study design, acquisition/interpretation of data, and drafting of the manuscript.

J.V., H.J., C.E., C.X., D.F., J.H., and R.V. have been involved in revising the manuscript critically.

D.F. has been involved in the radiological data interpretation

Each author has given final approval of the version to be published and agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Valcarenghi Jérôme.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jérôme, V., Jacques, H., Esfandiar, C. et al. Could a three-dimensional contralateral meniscus segmentation for allograft or scaffold sizing be possible? A prospective study. International Orthopaedics (SICOT) 47, 2457–2465 (2023). https://doi.org/10.1007/s00264-023-05923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05923-6

Keywords

Navigation