Skip to main content

Advertisement

Log in

Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw–bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS).

Methods

Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated.

Results

DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04).

Conclusion

Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

References

  1. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br Vol 84(8):1093–1110

    Article  Google Scholar 

  2. Henderson CE, Kuhl LL, Fitzpatrick DC, Marsh JL (2011) Locking plates for distal femur fractures: is there a problem with fracture healing? J Orthop Trauma 25(Suppl 1):S8–S14. doi:10.1097/BOT.0b013e3182070127

    Article  PubMed  Google Scholar 

  3. Henderson CE, Lujan TJ, Kuhl LL, Bottlang M, Fitzpatrick DC, Marsh JL (2011) 2010 mid-America Orthopaedic Association Physician in Training Award: healing complications are common after locked plating for distal femur fractures. Clin Orthop Relat Res 469(6):1757–1765. doi:10.1007/s11999-011-1870-6

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M (2010) Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma 24(3):156–162. doi:10.1097/BOT.0b013e3181be6720

    Article  PubMed  Google Scholar 

  5. Oh JK, Hwang JH, Lee SJ, Kim JI (2011) Dynamization of locked plating on distal femur fracture. Arch Orthop Trauma Surg 131(4):535–539. doi:10.1007/s00402-010-1202-4

    Article  PubMed  Google Scholar 

  6. Sommer C, Gautier E, Muller M, Helfet DL, Wagner M (2003) First clinical results of the Locking Compression Plate (LCP). Injury 34(Suppl 2):B43–B54

    Article  PubMed  Google Scholar 

  7. Ries Z, Hansen K, Bottlang M, Madey S, Fitzpatrick D, Marsh JL (2013) Healing results of periprosthetic distal femur fractures treated with far cortical locking technology: a preliminary retrospective study. Iowa Orthop J 33:7–11

    PubMed Central  PubMed  Google Scholar 

  8. Bottlang M (2011) Biomechanics of far cortical locking. J Orthop Trauma 25(6):e60. doi:10.1097/01.bot.0000398506.96521.7f

    Article  PubMed  Google Scholar 

  9. Bottlang M, Lesser M, Koerber J, Doornink J, von Rechenberg B, Augat P, Fitzpatrick DC, Madey SM, Marsh JL (2010) Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am Vol 92(7):1652–1660. doi:10.2106/JBJS.I.01111

    Article  Google Scholar 

  10. Hutzschenreuter P, Perren SM, Steinemann S, Geret V, Klebl M (1969) Some effects of rigidity of internal fixation on the healing pattern of osteotomies. Injury 1(1):77–81. doi:10.1016/S0020-1383(69)80038-0

    Article  Google Scholar 

  11. Acklin YP, Bereiter H, Sommer C (2010) Reversed LISS-DF in selected cases of complex proximal femur fractures. Injury 41(4):427–429. doi:10.1016/j.injury.2009.05.033

    Article  PubMed  Google Scholar 

  12. Döbele S, Gardner M, Schröter S, Höntzsch D, Stöckle U, Freude T (2014) DLS 5.0–the biomechanical effects of dynamic locking screws. PLoS ONE 9(4):e91933. doi:10.1371/journal.pone.0091933

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lujan TJ, Madey SM, Fitzpatrick DC, Byrd GD, Sanderson JM, Bottlang M (2010) A computational technique to measure fracture callus in radiographs. J Biomech 43(4):792–795. doi:10.1016/j.jbiomech.2009.10.013

    Article  PubMed  Google Scholar 

  14. Windolf M, Perren SM (2012) Basic mechanobiology of bone healing. In: Babst R, Bavonratanavech S (eds) Minimally Invasive Plate Osteosynthesis (MIPO). Thieme, Stuttgart, pp 13–30

    Google Scholar 

  15. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS (2003) Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury 34(Suppl 2):B11–B19

    Article  PubMed  Google Scholar 

  16. Wähnert D, Schröder R, Schulze M, Westerhoff P, Raschke M, Stange R (2014) Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. Int Orthop 38(1):47–53. doi:10.1007/s00264-013-2113-0

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gardner MJ, Nork SE, Huber P, Krieg JC (2009) Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study. J Orthop Trauma 23(4):281–287. doi:10.1097/BOT.0b013e31819df775

    Article  PubMed  Google Scholar 

  18. Gardner MJ, Nork SE, Huber P, Krieg JC (2010) Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41(6):652–656. doi:10.1016/j.injury.2010.02.022

    Article  PubMed  Google Scholar 

  19. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am Vol 91(8):1985–1994. doi:10.2106/JBJS.H.01038

    Article  Google Scholar 

  20. Döbele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, Nüssler AK, Lucke M, Andermatt D, Koch R, Stöckle U (2010) The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck's archives of surgery / Deutsche Gesellschaft fur Chirurgie 395(4):421–428. doi:10.1007/s00423-010-0636-z

    Article  PubMed  Google Scholar 

  21. Plecko M, Lagerpusch N, Andermatt D, Frigg R, Koch R, Sidler M, Kronen P, Klein K, Nuss K, Burki A, Ferguson SJ, Stoeckle U, Auer JA, von Rechenberg B (2013) The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)-an experimental study in sheep. Injury 44(10):1346–1357. doi:10.1016/j.injury.2012.10.022

    Article  PubMed  Google Scholar 

  22. Freude T, Schröter S, Gonser CE, Stöckle U, Acklin YP, Höntzsch D, Döbele S (2014) Controlled dynamic stability as the next step in "biologic plate osteosynthesis" - a pilot prospective observational cohort study in 34 patients with distal tibia fractures. Patient Saf Surg 8(1):3. doi:10.1186/1754-9493-8-3

    Article  PubMed Central  PubMed  Google Scholar 

  23. Freude T, Schröter S, Kraus TM, Höntzsch D, Stöckle U, Döbele S (2013) Dynamic locking screw 5.0–first clinical experience. Zeitschrift fur Orthopadie und Unfallchirurgie 151(3):284–290. doi:10.1055/s-0032-1328521

    Article  CAS  PubMed  Google Scholar 

  24. Freude T, Schroeter S, Plecko M, Bahrs C, Martetschlaeger F, Kraus TM, Stoeckle U, Doebele S (2014) Dynamic-locking-screw (DLS)-leads to less secondary screw perforations in proximal humerus fractures. BMC Musculoskelet Disord 15:194. doi:10.1186/1471-2474-15-194

    Article  PubMed Central  PubMed  Google Scholar 

  25. Röderer G, Gebhard F, Duerselen L, Ignatius A, Claes L (2014) Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating. Injury 45(10):1648–1652. doi:10.1016/j.injury.2014.04.018

    Article  PubMed  Google Scholar 

  26. Windolf M, Muths R, Braunstein V, Gueorguiev B, Hanni M, Schwieger K (2009) Quantification of cancellous bone-compaction due to DHS Blade insertion and influence upon cut-out resistance. Clin Biomech 24(1):53–58. doi:10.1016/j.clinbiomech.2008.09.005

    Article  Google Scholar 

  27. An Y (2002) Internal fixation in osteoporotic bone. Thieme, New York

    Book  Google Scholar 

  28. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am Vol 59(7):954–962

    CAS  Google Scholar 

  29. Hayes WC (1991) Biomechanics of cortical and trabecular bone: implications for fracture risk. In: Mow VC, Hayes WC (eds) Basic orthopedic biomechanics. Raven Press, New York, pp 93–142

    Google Scholar 

  30. Stone JL, Beaupre GS, Hayes WC (1983) Multiaxial strength characteristics of trabecular bone. J Biomech 16(9):743–752

    Article  CAS  PubMed  Google Scholar 

  31. Lenz M, Perren SM, Gueorguiev B, Hontzsch D, Windolf M (2013) Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin Biomech 28(9–10):988–993. doi:10.1016/j.clinbiomech.2013.09.005

    Article  Google Scholar 

  32. Fitzpatrick DC, Doornink J, Madey SM, Bottlang M (2009) Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin Biomech 24(2):203–209. doi:10.1016/j.clinbiomech.2008.11.002

    Article  Google Scholar 

  33. Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E (2004) Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res : Off Publ Orthop Res Soc 22(6):1237–1242. doi:10.1016/j.orthres.2004.04.001

    Article  CAS  Google Scholar 

  34. Drew T, Allcock P (2002) A new method of fixation in osteoporotic bone. A preliminary report. Injury 33(8):685–689

    Article  PubMed  Google Scholar 

  35. Lill H, Hepp P, Korner J, Kassi JP, Verheyden AP, Josten C, Duda GN (2003) Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 123(2–3):74–81. doi:10.1007/s00402-002-0465-9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was performed with the assistance of the AO Foundation via the AOTK System. DePuy Synthes is acknowledged for the delivery of all implants.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyko Gueorguiev.

Additional information

Tim Pohlemann and Boyko Gueorguiev contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohlemann, T., Gueorguiev, B., Agarwal, Y. et al. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model. International Orthopaedics (SICOT) 39, 761–768 (2015). https://doi.org/10.1007/s00264-014-2658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2658-6

Keywords

Navigation