Skip to main content
Log in

Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Fractures of the femur associated with total hip arthroplasty are a significant concern in orthopaedic and trauma surgery. However, little is known about the different biomechanical properties of internal fixation systems in combination with periprosthetic fractures. In this study two new internal fixation systems for periprosthetic fractures are investigated using a cadaver fracture model simulating a Vancouver B1 periprosthetic femur fracture.

Methods

Nine pairs of fresh-frozen cadaver femurs were scanned by dual X-ray absorptiometry. Cementless total hip prostheses were implanted and a periprosthetic femur fracture was simulated. Fractures were randomly fixed either with the fixed angle locking attachment plate (LAP®, Depuy Synthes®, Solothurn, Switzerland) or the variable angle non-contact bridging plate (NCB®, Zimmer GmbH, Winterthur, Switzerland). Each construct was cyclically loaded to failure in axial compression.

Results

Axial stiffness and cycles to failure were significantly higher in the NCB group. Both systems were able to be fixed well around the femoral stem.

Conclusion

The two different internal fixation systems for periprosthetic fractures differed significantly in our setup. The non-contact bridging plate system revealed significantly higher failure load and may be the preferred option where high stability and load capacity is needed right after operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lindahl H, Malchau H, Oden A, Garellick G (2006) Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Joint Surg Br 88(1):26–30

    Article  CAS  PubMed  Google Scholar 

  2. Meek RM, Norwood T, Smith R, Brenkel IJ, Howie CR (2011) The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement. J Bone Joint Surg Br 93(1):96–101

    Article  CAS  PubMed  Google Scholar 

  3. Lindahl H (2007) Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury 38(6):651–654

    Article  PubMed  Google Scholar 

  4. Garbuz DS, Masri BA, Duncan CP (1998) Periprosthetic fractures of the femur: principles of prevention and management. Instr Course Lect 47:237–242

    CAS  PubMed  Google Scholar 

  5. Pike J, Davidson D, Garbuz D, Duncan CP, O’Brien PJ, Masri BA (2009) Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. J Am Acad Orthop Surg 17(11):677–688

    PubMed  Google Scholar 

  6. Giannoudis PV, Kanakaris NK, Tsiridis E (2007) Principles of internal fixation and selection of implants for periprosthetic femoral fractures. Injury 38(6):669–687

    Article  PubMed  Google Scholar 

  7. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmuller A, Sudkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41(12):1256–1261

    Article  CAS  PubMed  Google Scholar 

  8. Lever JP, Zdero R, Nousiainen MT, Waddell JP, Schemitsch EH (2010) The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty. J Orthop Surg Res 5:45

    Article  PubMed Central  PubMed  Google Scholar 

  9. Pletka JD, Marsland D, Belkoff SM, Mears SC, Kates SL (2011) Biomechanical comparison of 2 different locking plate fixation methods in Vancouver b1 periprosthetic femur fractures. Geriatr Orthop Surg Rehabil 2(2):51–55

    Article  PubMed Central  PubMed  Google Scholar 

  10. Demos HA, Briones MS, White PH, Hogan KA, Barfield WR (2012) A biomechanical comparison of periprosthetic femoral fracture fixation in normal and osteoporotic cadaveric bone. J Arthroplasty 27(5):783–788

    Article  PubMed  Google Scholar 

  11. Dennis MG, Simon JA, Kummer FJ, Koval KJ, DiCesare PE (2000) Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques. J Arthroplasty 15(4):523–528

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann W, Rupprecht M, Nuechtern J, Melzner D, Sellenschloh K, Kolb J, Fensky F, Hoffmann M, Puschel K, Morlock M, Rueger JM (2012) What is the risk of stress risers for interprosthetic fractures of the femur? A biomechanical analysis. Int Orthop 36(12):2441–2446

    Article  PubMed Central  PubMed  Google Scholar 

  13. Corten K, Vanrykel F, Bellemans J, Frederix PR, Simon JP, Broos PL (2009) An algorithm for the surgical treatment of periprosthetic fractures of the femur around a well-fixed femoral component. J Bone Joint Surg Br 91(11):1424–1430

    Article  CAS  PubMed  Google Scholar 

  14. Wahnert D, Hoffmeier K, Frober R, Hofmann GO, Muckley T (2011) Distal femur fractures of the elderly-different treatment options in a biomechanical comparison. Injury 42(7):655–659

    Article  PubMed  Google Scholar 

  15. Wahnert D, Lange JH, Schulze M, Lenschow S, Stange R, Raschke MJ (2013) The potential of implant augmentation in the treatment of osteoporotic distal femur fractures: a biomechanical study. Injury 44(6):808–812

    Article  CAS  PubMed  Google Scholar 

  16. Buttaro MA, Farfalli G, Paredes Nunez M, Comba F, Piccaluga F (2007) Locking compression plate fixation of Vancouver type-B1 periprosthetic femoral fractures. J Bone Joint Surg Am 89(9):1964–1969

    Article  CAS  PubMed  Google Scholar 

  17. Erhardt JB, Grob K, Roderer G, Hoffmann A, Forster TN, Kuster MS (2008) Treatment of periprosthetic femur fractures with the non-contact bridging plate: a new angular stable implant. Arch Orthop Trauma Surg 128(4):409–416

    Article  CAS  PubMed  Google Scholar 

  18. Lenz M, Windolf M, Muckley T, Hofmann GO, Wagner M, Richards RG, Schwieger K, Gueorguiev B (2012) The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques. Int Orthop 36(9):1915–1921

    Article  PubMed Central  PubMed  Google Scholar 

  19. El-Zayat BF, Ruchholtz S, Efe T, Fuchs-Winkelmann S, Kruger A, Kreslo D, Zettl R (2012) NCB-plating in the treatment of geriatric and periprosthetic femoral fractures. Orthop Traumatol Surg Res 98(7):765–772

    Article  CAS  PubMed  Google Scholar 

  20. Ruchholtz S, El-Zayat B, Kreslo D, Bucking B, Lewan U, Kruger A, Zettl R (2013) Less invasive polyaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur—A prospective study of 41 patients. Injury 44(2):239–248

    Article  PubMed  Google Scholar 

  21. Kammerlander C, Kates SL, Wagner M, Roth T (2013) Blauth M (2013) Minimally invasive periprosthetic plate osteosynthesis using the locking attachment plate. Oper Orthop Traumatol 25(4):398–410

    Article  CAS  PubMed  Google Scholar 

  22. Choi JK, Gardner TR, Yoon E, Morrison TA, Macaulay WB, Geller JA (2010) The effect of fixation technique on the stiffness of comminuted Vancouver B1 periprosthetic femur fractures. J Arthroplasty 25(6 Suppl):124–128

    Article  PubMed  Google Scholar 

  23. Garcia-Cimbrelo E, Cruz-Pardos A, Madero R, Ortega-Andreu M (2003) Total hip arthroplasty with use of the cementless Zweymuller Alloclassic system. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 85-A(2):296–303

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors were not compensated; benefits were received in support of the research material described in this article from Zimmer GmbH (Winterthur, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Stange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wähnert, D., Schröder, R., Schulze, M. et al. Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. International Orthopaedics (SICOT) 38, 47–53 (2014). https://doi.org/10.1007/s00264-013-2113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2113-0

Keywords

Navigation