Skip to main content
Log in

Low femoral antetorsion and total hip arthroplasty: a risk factor

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate whether femoral antetorsion affects the range of motion (ROM) following total hip arthroplasty (THA) using 3D dynamic analysis.

Methods

Using 3D computed tomography (CT) data of 71 patients (71 hips) who underwent THA, we calculated antetorsion of the femoral neck, flexion range of motion (Flex ROM), internal rotation (Int-R) and external rotation (Ext-R). Evaluation of the relationship between antetorsion, ROM and the impingement site was performed. As for implant position, anteversion of the femoral implant was set to be the same as natural antetorsion of the femoral neck, and the acetabular component was set 45° of total anteversion in all cases.

Results

We found a significant decrease in Flex ROM and Int-R inversely proportional to femoral antetorsion. In patients with lower antetorsion, Flex ROM and Int-R decreased due to bony impingement (the anterior great trochanteric region of the femur impinges on the anteroinferior edge of the anteroinferior iliac spine). However, in Ext-R, there was no relationship between ROM and femoral antetorsion.

Conclusions

We demonstrated that lower femoral antetorsion substantially affects Flex ROM and Int-R due to bony impingement. For these patients, consideration must be given to retaining femoral anterior offset in THA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caton J, Prudhon JL (2011) Over 25 years survival after Charnley's total hip arthroplasty. Int Orthop 35(2):185–188

    Article  PubMed Central  PubMed  Google Scholar 

  2. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr (2000) The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head–neck ratios. J Bone Joint Surg Am 82:315–321

    PubMed  Google Scholar 

  3. Bozic KJ, Lau EC, Ong KL, Vail TP, Rubash HE, Berry DJ (2012) Comparative effectiveness of metal-on-metal and metal-on-polyethylene bearings in Medicare total hip. J Arthroplasty 27(8):37–40

    Article  PubMed  Google Scholar 

  4. Caton JH, Prudhon JL, Ferreira A, Aslanian T, Verdier R (2014) A comparative and retrospective study of three hundred and twenty primary Charnley type hip replacements with a minimum follow up of ten years to assess wether a dual mobility cup has a decreased dislocation risk. Int Orthop 38(6):1125–1129

    Article  PubMed  Google Scholar 

  5. Nevelos J, Johnson A, Heffernan C, Macintyre J, Markel DC, Mont MA (2013) What factors affect posterior dislocation distance in THA? Clin Orthop Relat Res 471(2):519–526

    Article  PubMed Central  PubMed  Google Scholar 

  6. Morrey BF (1997) Difficult complications after hip joint replacement. Dislocation. Clin Orthop Relat Res 344:179–187

    Article  PubMed  Google Scholar 

  7. Jolles BM, Zangger P, Leyvraz PF (2002) Factors predisposing to dislocation after primary total hip arthroplasty. A multivariate analysis. J Arthroplasty 17:282–288

    Article  CAS  PubMed  Google Scholar 

  8. Bartz RL, Nobel PC, Kadakia NR, Tullos HS (2000) The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am 82:1300–1307

    CAS  PubMed  Google Scholar 

  9. Lewinnek GE (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60:217–220

    CAS  PubMed  Google Scholar 

  10. Dorr LD, Malik A, Dastane M, Wan Z (2009) Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 467(1):119

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lachiewicz PF, Soileau ES (2013) Low early and late dislocation rates with 36- and 40-mm heads in patients at high risk for dislocation. Clin Orthop Relat Res 471(2):439–443

    Article  PubMed Central  PubMed  Google Scholar 

  12. Garbuz DS, Masri BA, Duncan CP, Greidanus NV, Bohm ER, Petrak MJ, Della Valle CJ, Gross AE (2012) Dislocation in revision THA: do large heads (36 and 40 mm) result in reduced dislocation rates in a randomized clinical trial? Clin Orthop Relat Res 470(2):351–356

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dorr LD, Wan Z, Malik A, Dastane M, Deshmane P (2009) A comparison of surgeon estimation and computed tomographic measurement of femoral component anteversion in cementless total hip arthroplasty. J Bone Joint Surg Am 91:2598–2604

    Article  PubMed  Google Scholar 

  14. D’Lima DD, Urguart AG, Buehler KO, Walker RH, Colwell CW (2000) The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head neck ratios. J Bone Joint Surg Am 82:315–321

    PubMed  Google Scholar 

  15. Widmer KH, Zurfluh B (2004) Compliant positioning of total hip components for optimal range of motion. J Orthop Res 22:815–821

    Article  PubMed  Google Scholar 

  16. Kessler O, Patil S, Stefan W, Mayr E, Colwell CW, D’Lima DD (2008) Bony impingement affects range of motion after total Hip arthroplasty: a subject-specific approach. J Orthop Res 26(4):443–452

    Article  PubMed  Google Scholar 

  17. Rousseau MA, Lazennec JY, Boyer P, Mora N, Gorin M, Catonné Y (2009) Optimization of total hip arthroplasty implantation: is the anterior pelvic plane concept valid? J Arthroplasty 24(1):22–26

    Article  PubMed  Google Scholar 

  18. Incavo SJ, Thompson MT, Gold JE, Patel RV, Icenogle KD, Noble PC (2011) Which procedure better restores intact hip range of motion: total hip arthroplasty or resurfacing? A combined cadaveric and computer simulation study. J Arthroplasty 26(3):391–397

    Article  PubMed  Google Scholar 

  19. Shoji T, Yasunaga Y, Yamasaki T, Mori R, Hamanishi M, Ochi M (2013) Bony impingement depends on the bone morphology of the hip after total hip arthroplasty. Int Orthop 37:1897–1903

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ranawat CS, Rao RR, Rodriguez JA, Bhende HS (2001) Correction of limb length inequality during total hip arthroplasty. J Arthroplasty 16:715–720

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki K, Matsubara M, Morita S, Muneta T, Shinomiya K (2002) CT image evaluation of the internal rotation limit prior to bony impingement after total hip arthroplasty. J Orthop Sci 7:433–438

    Article  PubMed  Google Scholar 

  22. Burroughs BR, Hallstrom B, Golladay GJ et al (2005) Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes. J Arthroplasty 20(1):11–19

    Article  PubMed  Google Scholar 

  23. Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41:356–367

    Article  PubMed  Google Scholar 

  24. Dorr LD, Wan Z (1998) Causes of and treatment protocol for instability of total hip replacement. Clin Orthop Relat Res 335:144–151

    Article  Google Scholar 

  25. Dorr LD, Wolf AW, Chandler R et al (1983) Classification and treatment of dislocations of total hip arthroplasty. Clin Orthop 173:151–158

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Shoji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoji, T., Yasunaga, Y., Yamasaki, T. et al. Low femoral antetorsion and total hip arthroplasty: a risk factor. International Orthopaedics (SICOT) 39, 7–12 (2015). https://doi.org/10.1007/s00264-014-2452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2452-5

Keywords

Navigation