Skip to main content

Advertisement

Log in

Treatment with an immature dendritic cell-targeting vaccine supplemented with IFN-α and an inhibitor of DNA methylation markedly enhances survival in a murine melanoma model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The chemokine MIP-3α (CCL20) binds to CCR6 on immature dendritic cells. DNA vaccines fusing MIP-3α to melanoma-associated antigens have shown improved efficacy and immunogenicity in the B16F10 mouse melanoma model. Here, we report that the combination of type-I interferon therapy (IFNα) with 5-Aza-2′-deoxycitidine (5Aza) profoundly enhanced the therapeutic efficacy of a MIP-3α-Gp100-Trp2 DNA vaccine.

Methods

Beginning on day 5 post-transplantation of B16F10 melanoma, vaccine was administered intramuscularly (i.m.) by electroporation. CpG adjuvant was given 2 days later. 5Aza was given intraperitoneally at 1 mg/kg and IFNα therapy either intratumorally or i.m. as noted. Tumor sizes, tumor growth, and mouse survival were assessed. Tumor lysate gene expression levels and tumor-infiltrating lymphocytes (TILs) were assessed by qRT-PCR and flow cytometry, respectively.

Results

Adding IFNα and 5Aza treatments to mice vaccinated with MIP-3α-Gp100-Trp2 leads to reduced tumor burden and increased median survival (39% over vaccine and 95% over controls). Tumor lysate expression of CCL19 and CCR7 were upregulated ten and fivefold over vaccine, respectively. Vaccine-specific and overall CD8+ TILs were increased over vaccine (sevenfold and fourfold, respectively), as well as the proportion of TILs that were CD8+ (twofold).

Conclusions

Efficient targeting of antigen to immature dendritic cells with a chemokine-fusion vaccine offers an alternative to classic and dendritic cell vaccines. Combining this approach with IFNα and 5Aza treatment significantly improved vaccine efficacy. This improved efficacy correlated with changes in chemokine gene expression and CD8+ TIL infiltration and was dependent on the presence of all therapeutic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5Aza:

5-Aza-2′-Deoxycytidine

D-MIP3α:

Defective version of MIP3α

i.t.:

Intra-tumoral administration

iDC:

Immature dendritic cells

IFNα or IFN:

Interferon alpha

MGp100:

Vaccine fusing MIP-3α to antigenic region of Gp100

MGpTrp2:

Vaccine fusing MIP-3α to antigenic regions of Gp100 and Trp2

MIP-3α:

Macrophage inflammatory protein-3 alpha

MTrp2:

Vaccine fusing MIP-3α to antigenic region of Trp2

TIL:

Tumor infiltrating lymphocyte

Trp2:

Tyrosinase-related protein 2

References

  1. Gordy J, Luo K, Markham R (2019) IFN-alpha and 5-Aza-2-deoxycytidine enhance the anti-tumor efficacy of a dendritic-cell targeting MIP3alpha-Gp100-Trp2 DNA vaccine by affecting T-cell recruitment and tumor microenvironment gene expression. Biorxiv. https://doi.org/10.1101/531616

    Article  Google Scholar 

  2. Gordy J, Markham R (2018) Abstract 726: type-I interferon and epigenetic modulators enhance the anti-tumor efficacy of a dendritic-cell targeting MIP3α-antigen vaccine in the B16F10 mouse model. AACR Annual Meeting 2018 Proceedings. Cancer Res 78(13 Suppl):726. https://doi.org/10.1158/1538-7445.am2018-726

    Article  Google Scholar 

  3. Gordy J, Markham R (2018) Abstract P158: IFN-α and 5′-Aza-2′-deoxycytidine enhance the anti-tumor efficacy of a dendritic-cell targeting MIP3α- Gp100-Trp2 DNA vaccine by affecting T-cell recruitment and tumor microenvironment gene expression. 33rd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer. J Immunother Cancer 6(Suppl 1):P158. https://doi.org/10.1186/s40425-018-0422-y

    Article  Google Scholar 

  4. Neimert-Andersson T, Hällgren A-C, Andersson M et al (2011) Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine 29:8965–8973

    Article  CAS  Google Scholar 

  5. Schiavo R, Baatar D, Olkhanud P et al (2006) Chemokine receptor targeting efficiently directs antigens to MHC class I pathways and elicits antigen-specific CD8+ T-cell responses. Blood 107:4597–4605. https://doi.org/10.1182/blood-2005-08-3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biragyn A, Ruffini P, Coscia M et al (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104:1961–1969. https://doi.org/10.1182/blood-2004-02-0637

    Article  CAS  PubMed  Google Scholar 

  7. Gordy JT, Luo K, Zhang H et al (2016) Fusion of the dendritic cell-targeting chemokine MIP3α to melanoma antigen Gp100 in a therapeutic DNA vaccine significantly enhances immunogenicity and survival in a mouse melanoma model. J Immunother Cancer 4:96. https://doi.org/10.1186/s40425-016-0189-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gordy JT, Luo K, Francica B et al (2018) Anti-IL-10-mediated enhancement of antitumor efficacy of a dendritic cell-targeting MIP3α-gp100 vaccine in the B16F10 mouse melanoma model is dependent on Type I interferons. J Immunother 41:181–189. https://doi.org/10.1097/CJI.0000000000000212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biragyn A, Schiavo R, Olkhanud P et al (2007) Tumor-associated embryonic antigen-expressing vaccines that target CCR6 elicit potent CD8+ T cell-mediated protective and therapeutic antitumor immunity. J Immunol 179:1381–1388

    Article  CAS  Google Scholar 

  10. Luo K, Zavala F, Gordy J et al (2017) Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine. Vaccine 35:2358–2364

    Article  Google Scholar 

  11. Luo K, Zhang H, Zavala F et al (2014) Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities. PLoS One 9:e90413. https://doi.org/10.1371/journal.pone.0090413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van der Burg SH, Arens R, Ossendorp F et al (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16:219–233. https://doi.org/10.1038/nrc.2016.16

    Article  CAS  PubMed  Google Scholar 

  13. Lucarini V, Buccione C, Ziccheddu G et al (2017) Combining Type I interferons and 5-Aza-2′-Deoxycitidine to improve anti-tumor response against melanoma. J Invest Dermatol 137:159–169. https://doi.org/10.1016/j.jid.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  14. Chiappinelli KB, Strissel PL, Desrichard A et al (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162:974–986. https://doi.org/10.1016/j.cell.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karpf AR, Peterson PW, Rawlins JT et al (1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci 96:14007–14012. https://doi.org/10.1073/pnas.96.24.14007

    Article  CAS  PubMed  Google Scholar 

  16. Ott PA, Fritsch EF, Wu CJ, Dranoff G (2014) Vaccines and melanoma. Hematol Oncol Clin N Am 28:559–569. https://doi.org/10.1016/j.hoc.2014.02.008

    Article  Google Scholar 

  17. Cho H-I, Celis E (2012) Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 61:343–351

    Article  CAS  Google Scholar 

  18. Slingluff CL (2011) The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 17:343–350

    Article  CAS  Google Scholar 

  19. Best SR, Peng S, Juang C-M et al (2009) Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 27:5450–5459. https://doi.org/10.1016/j.vaccine.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider W, Chevilotte M, Rice C (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545

    Article  CAS  Google Scholar 

  21. Corbel M (1994) Control testing of combined vaccines: a consideration of potential problems and approaches. Biologicals 22:353–360

    Article  CAS  Google Scholar 

  22. Moynihan KD, Opel CF, Szeto GL et al (2016) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22:1402–1410. https://doi.org/10.1038/nm.4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mansour M, Pohajdak B, Kast M et al (2007) Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®. J Transl Med 5:20. https://doi.org/10.1186/1479-5876-5-20

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Tongchusak S, Mizukami Y et al (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32:3666–3678. https://doi.org/10.1016/j.biomaterials.2011.01.067

    Article  CAS  PubMed  Google Scholar 

  25. McGray R, Bernard D, Hallett R et al (2012) Combined vaccination and immunostimulatory antibodies provides durable cure of murine melanoma and induces transcriptional changes associated with positive outcome in human melanoma patients. OncoImmunology 1:419431. https://doi.org/10.4161/onci.19534

    Article  Google Scholar 

  26. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:119–134

    Article  CAS  Google Scholar 

  27. Ferrantini M, Capone I, Belardelli F (2007) Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochemie 89:884–893

    Article  CAS  Google Scholar 

  28. Sikora AG, Jaffarzad N, Hailemichael Y et al (2009) IFN-alpha enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. J Immunol 182:7398–7407. https://doi.org/10.4049/jimmunol.0802982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirkwood JM, Strawderman MH, Ernstoff MS et al (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 14:7–17

    Article  CAS  Google Scholar 

  30. Raaijmakers M, Rozati S, Goldinger S et al (2013) Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy 5:169–182. https://doi.org/10.2217/imt.12.162

    Article  CAS  PubMed  Google Scholar 

  31. American Cancer Society (2018) Treatment of Melanoma Skin Cancer, by Stage. Viewed November 5th 2018; https://www.cancer.org/cancer/melanoma-skin-cancer/treating/by-stage.html. Accessed 5 Nov 2018

  32. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:1–10. https://doi.org/10.1038/nri1329

    Article  CAS  Google Scholar 

  33. Ohlschläger P, Spies E, Alvarez G et al (2011) The combination of TLR-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with HPV-16 E7 encoding DNA. Int J Cancer 128:473–481. https://doi.org/10.1002/ijc.25344

    Article  CAS  PubMed  Google Scholar 

  34. Ren J, Zheng L, Chen Q et al (2004) Co-administration of a DNA vaccine encoding the prostate specific membrane antigen and CpG oligodeoxynucleotides suppresses tumor growth. J Transl Med 2:1–10. https://doi.org/10.1186/1479-5876-2-29

    Article  CAS  Google Scholar 

  35. Thomas X (2012) DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences. Expert Opin Drug Discov 7:1038–1051. https://doi.org/10.1517/17460441.2012.722618

    Article  CAS  Google Scholar 

  36. Nie J, Liu L, Li X, Han W (2014) Decitabine, a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors. Cancer Lett 354:12–20

    Article  CAS  Google Scholar 

  37. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13. https://doi.org/10.1002/ijc.23607

    Article  CAS  PubMed  Google Scholar 

  38. Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510

    Article  CAS  Google Scholar 

  39. Fratta E, Sigalotti L, Covre A et al (2013) Epigenetics of melanoma: implications for immune-based therapies. Immunotherapy 5:1103–1116. https://doi.org/10.2217/imt.13.108

    Article  CAS  PubMed  Google Scholar 

  40. Jäger E, Ringhoffer M, Karbach J et al (1996) Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66:470–476. https://doi.org/10.1002/(SICI)1097-0215(19960516)66:4%3c470:AID-IJC10%3e3.0.CO;2-C

    Article  PubMed  Google Scholar 

  41. Jäger E, Ringhoffer M, Altmannsberger M et al (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71:142–147. https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2%3c142:AID-IJC3%3e3.0.CO;2-0

    Article  PubMed  Google Scholar 

  42. Vilgelm A, Richmond A (2019) Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy. Front Immunol 10:333. https://doi.org/10.3389/fimmu.2019.00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hauser M, Legler D (2016) Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol 99:869–882. https://doi.org/10.1189/jlb.2MR0815-380R

    Article  CAS  PubMed  Google Scholar 

  44. Damås J, Landrø L, Fevang B et al (2009) Homeostatic chemokines CCL19 and CCL21 promote inflammation in human immunodeficiency virus-infected patients with ongoing viral replication. Clin Exp Immunol 157:400–407. https://doi.org/10.1111/j.1365-2249.2009.03976.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marsland B, Bättig P, Bauer M et al (2005) CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22:493–505. https://doi.org/10.1016/j.immuni.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  46. Cheng H-W, Onder L, Cupovic J et al (2018) CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T cell responses. J Allergy Clin Immun 142:1257–1271. https://doi.org/10.1016/j.jaci.2017.12.998(.e4)

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen-Hoai T, Hohn O, Vu MD et al (2012) CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 19:880–887. https://doi.org/10.1038/cgt.2012.78

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen-Hoai T, Baldenhofer G, Ahmed M et al (2012) CCL19 (ELC) improves TH1-polarized immune responses and protective immunity in a murine Her2/neu DNA vaccination model. J Gene Med 14:128–137. https://doi.org/10.1002/jgm.1651

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Wang B, Li Y et al (2019) Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system. Acs Cent Sci 5:277–289. https://doi.org/10.1021/acscentsci.8b00688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilkington K, Clark-Lewis I, McColl S (2004) Inhibition of generation of cytotoxic t lymphocyte activity by a CCL19/macrophage inflammatory protein (MIP)-3β antagonist. J Biol Chem 279:40276–40282. https://doi.org/10.1074/jbc.M405808200

    Article  CAS  PubMed  Google Scholar 

  51. Ziegler E, Gueler F, Rong S et al (2006) CCL19-IgG prevents allograft rejection by impairment of immune cell trafficking. J Am Soc Nephrol 17:2521–2532. https://doi.org/10.1681/ASN.2005070782

    Article  CAS  PubMed  Google Scholar 

  52. Yagawa Y, Robertson-Tessi M, Zhou S et al (2017) Systematic screening of chemokines to identify candidates to model and create ectopic lymph node structures for cancer immunotherapy. Sci Rep-uk 7:15996. https://doi.org/10.1038/s41598-017-15924-2

    Article  CAS  Google Scholar 

  53. Messina J, Fenstermacher D, Eschrich S et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep-uk 2:765. https://doi.org/10.1038/srep00765

    Article  CAS  Google Scholar 

  54. Engelhard V, Rodriguez A, Mauldin I et al (2018) Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200:432–442. https://doi.org/10.4049/jimmunol.1701269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yasuda T, Kuwabara T, Nakano H et al (2007) Chemokines CCL19 and CCL21 promote activation-induced cell death of antigen-responding T cells. Blood 109:449–456. https://doi.org/10.1182/blood-2006-04-018101

    Article  CAS  PubMed  Google Scholar 

  56. Ziegler E, Oberbarnscheidt M, Bulfone-Paus S et al (2007) CCR7 signaling inhibits T cell proliferation. J Immunol 179:6485–6493. https://doi.org/10.4049/jimmunol.179.10.6485

    Article  CAS  PubMed  Google Scholar 

  57. Cristiani C, Turdo A, Ventura V et al (2019) Accumulation of circulating CCR7 + natural killer cells marks melanoma evolution and reveals a CCL19-dependent metastatic pathway. Cancer Immunol Res 7:canimm.0651.2018. https://doi.org/10.1158/2326-6066.cir-18-0651

    Article  CAS  Google Scholar 

  58. Kühnelt-Leddihn L, Müller H, Eisendle K et al (2012) Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: a potential prognostic value for CCR7 and CCR10? Arch Dermatol Res 304:185–193. https://doi.org/10.1007/s00403-012-1222-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. TC Wu (Johns Hopkins School of Medicine, Baltimore, MD) for allowing us to utilize his electroporator and Dr. Jonathan Schneck (Johns Hopkins School of Medicine, Baltimore, MD) for his gift of B16F10 cells. We would also like to acknowledge Dr. Prakash Srinivisan (Johns Hopkins Bloomberg School of Public Health (JHBSPH), Baltimore, MD) for flow cytometry support. We would finally like to acknowledge the Molecular Microbiology and Immunology Common Equipment Core Facility and specifically Anne Jedlicka (JHBSPH, Baltimore, MD) for flow cytometry and qRT-PCR support.

Funding

This research was supported by philanthropic donations to the Markham laboratory.

Author information

Authors and Affiliations

Authors

Contributions

JTG: performed, designed, and analyzed all the experiments and was the primary author of the manuscript. KL: provided assistance with design and implementation of the mouse studies. ESK, AK, and SKA: provided assistance with the qRT-PCR studies and the revision process. PCK: contributed to the revision process. RBM: contributed to the conception, design, analysis of data, and the writing of the manuscript. All authors read and approved the final manuscript version.

Corresponding author

Correspondence to Richard B. Markham.

Ethics declarations

Conflict of interest

James T. Gordy and Richard B. Markham are inventors on pending patents using the vaccine platform described in this paper and have equity interest in a company that has rights to this vaccine platform. The authors declare that there is no other conflict of interest.

Ethical approval and ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the IACUC of the Johns Hopkins University under Protocols #MO16H147 and MO19H139. This article does not contain any studies with human participants performed by any of the authors

Informed consent

Not applicable.

Animal source

5–6 week old female C57BL/6 (H-2b) mice were purchased from Charles River Laboratories (Wilmington, MA).

Cell line authentication

Low-passage B16F10 cells were gifted to us by Dr. Jonathan Schneck (Johns Hopkins School of Medicine, Baltimore, MD). Cells were maintained with low passage stocks to maintain uniformity in transplantation, and therefore further authentication was deemed unnecessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Versions of this work have been published as an online pre-print and as conference abstracts Pre-print: bioRxiv 531616; https://doi.org/10.1101/531616 [1].

American Association for Cancer Research Annual Meeting, April 15th, 2018, Chicago, IL, USA [2].

Society for the Immunotherapy of Cancer 33rd Annual Meeting, November 7–11, 2018, Washington, DC, USA [3].

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordy, J.T., Luo, K., Kapoor, A. et al. Treatment with an immature dendritic cell-targeting vaccine supplemented with IFN-α and an inhibitor of DNA methylation markedly enhances survival in a murine melanoma model. Cancer Immunol Immunother 69, 569–580 (2020). https://doi.org/10.1007/s00262-019-02471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02471-0

Keywords

Navigation