Skip to main content

Advertisement

Log in

Design of immunogenic and effective multi-epitope DNA vaccines for melanoma

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Plasmid DNA vaccination is an attractive way to elicit T cell responses against infectious agents and tumor cells. DNA constructs can be designed to contain multiple T cell epitopes to generate a diverse immune response to incorporate numerous antigens and to reduce limitations due to MHC restriction into a single entity. We have prepared cDNA plasmid constructs containing several mouse T cell epitopes connected by either furin-sensitive or furin-resistant linkers and studied the effects of a cationic cell-penetrating sequence from HIV-tat. Significant CD8 T cell responses were obtained with multi-epitope DNA vaccines followed by in vivo electroporation regardless of the type of linker used and whether the construct had the HIV-tat sequence. The magnitude of immune responses was very similar to all CD8 T cell epitopes contained within each vaccine construct, indicating the absence of immunodominance. Incorporating a T helper epitope into the constructs increased the T cell responses. Prophylactic and therapeutic antitumor responses against B16 melanoma were obtained using a construct containing epitopes from melanosomal proteins, indicating that this vaccination was successful in generating responses to self-antigens that potentially may be subjected to immune tolerance. These findings are useful for designing DNA vaccines for a multitude of diseases where T lymphocytes play a protective or therapeutic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bijker MS, Melief CJ, Offringa R, van der Burg SH (2007) Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 6(4):591–603

    Article  PubMed  CAS  Google Scholar 

  2. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414

    Article  PubMed  CAS  Google Scholar 

  3. De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11(5–6):203–209

    Article  PubMed  Google Scholar 

  4. Cho HI, Celis E (2009) Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res 69(23):9012–9019

    Article  PubMed  CAS  Google Scholar 

  5. Assudani D, Cho HI, DeVito N, Bradley N, Celis E (2008) In vivo expansion, persistence, and function of peptide vaccine-induced CD8 T cells occur independently of CD4 T cells. Cancer Res 68(23):9892–9899

    Article  PubMed  CAS  Google Scholar 

  6. Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E (2007) Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 67(3):1326–1334

    Article  PubMed  CAS  Google Scholar 

  7. Davila E, Kennedy R, Celis E (2003) Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 63(12):3281–3288

    PubMed  CAS  Google Scholar 

  8. Itoh T, Celis E (2005) Transcutaneous immunization with cytotoxic T-cell peptide epitopes provides effective antitumor immunity in mice. J Immunother 28(5):430–437

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Higashimoto Y, Appella E, Celis E (2004) Multiepitope Trojan antigen peptide vaccines for the induction of antitumor CTL and Th immune responses. J Immuno 172(7):4575–4582

    CAS  Google Scholar 

  10. Lu J, Wettstein PJ, Higashimoto Y, Appella E, Celis E (2001) TAP-independent presentation of CTL epitopes by Trojan antigens. J Immuno 166(12):7063–7071

    CAS  Google Scholar 

  11. Cho HI, Lee YR, Celis E (2011) Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood 117:135–144

    Article  PubMed  CAS  Google Scholar 

  12. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96(8):4262–4267

    Article  PubMed  CAS  Google Scholar 

  13. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16(9):867–870

    Article  PubMed  CAS  Google Scholar 

  14. Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immuno 174(10):6292–6298

    CAS  Google Scholar 

  15. Gronevik E, Mathiesen I, Lomo T (2005) Early events of electroporation-mediated intramuscular DNA vaccination potentiate Th1-directed immune responses. J Gene Med 7(9):1246–1254

    Article  PubMed  Google Scholar 

  16. Prud’homme GJ (2005) DNA vaccination against tumors. J Gene Med 7(1):3–17

    Article  PubMed  Google Scholar 

  17. Suhrbier A (1997) Multi-epitope DNA vaccines. Immunol Cell Biol 75(4):402–408

    Article  PubMed  CAS  Google Scholar 

  18. Doan T, Herd K, Ramshaw I, Thomson S, Tindle RW (2005) A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour. Cancer Immunol Immunother 54(2):157–171

    Article  PubMed  CAS  Google Scholar 

  19. Velders MP, Weijzen S, Eiben GL, Elmishad AG, Kloetzel PM, Higgins T, Ciccarelli RB, Evans M, Man S, Smith L, Kast WM (2001) Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 166(9):5366–5373

    PubMed  CAS  Google Scholar 

  20. Livingston BD, Newman M, Crimi C, McKinney D, Chesnut R, Sette A (2001) Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 19(32):4652–4660

    Article  PubMed  CAS  Google Scholar 

  21. Hanke T, Neumann VC, Blanchard TJ, Sweeney P, Hill AV, Smith GL, McMichael A (1999) Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 17(6):589–596

    Article  PubMed  CAS  Google Scholar 

  22. Kotturi MF, Scott I, Wolfe T, Peters B, Sidney J, Cheroutre H, von Herrath MG, Buchmeier MJ, Grey H, Sette A (2008) Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J Immunol 181(3):2124–2133

    PubMed  CAS  Google Scholar 

  23. Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AK (2009) Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 10(6):636–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this work to the memory of our friend and colleague Dr. Joseph Lustgarten, tumor immunologist who passed away on June 30, 2011. This work was supported by a grant from the Moffitt Comprehensive Melanoma Research Center. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Celis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, HI., Celis, E. Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 61, 343–351 (2012). https://doi.org/10.1007/s00262-011-1110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1110-7

Keywords

Navigation