Skip to main content

Advertisement

Log in

Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy

  • Special Section: ovarian cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare CT texture features of benign and malignant ovarian lesions and to build a machine learning model to detect malignancy in incidental ovarian lesions.

Methods

In this IRB-approved, HIPAA-compliant, retrospective study, 427 consecutive patients with incidental ovarian lesions detected on contrast-enhanced CT (348, 81.5% benign and 79, 18.5% malignant) were included. The following CT texture features were analyzed using commercially available software (TexRAD, Feedback Plc, Cambridge, UK): total pixel, mean, standard deviation (SD), entropy, mean value of positive pixels (MPP), skewness, kurtosis and entropy. Three machine learning models were created by combining texture features and patients’ age, and performance of these models was assessed using tenfold cross-validation. Receiver operating characteristics (ROC) were constructed to assess sensitivity and specificity. The cutoff value was picked using a cost-weighted method.

Results

Total pixels, mean, SD, entropy, MPP, and skewness were significantly different between benign and malignant groups (p < 0.05). With a selected 10 as a cost factor to optimize cutoff value selection, sensitivity 92%, specificity 60% in the random forest (RF) model, sensitivity 91%, specificity 69% in SVM model, and sensitivity 92%, specificity 61% in the logistic regression, respectively.

Conclusion

CT texture analysis could provide objective imaging analysis of incidental ovarian lesions and ML models using CT texture features and age demonstrated high sensitivity and moderate specificity for detection of malignant lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Yes.

Code availability

Yes.

Abbreviations

ML:

Machine learning

LR:

Logistic regression

SVM:

Support vector machine

RF:

Random forest

MPP:

Mean value of positive pixels

References

  1. Spencer JA, Gore RM. The adnexal incidentaloma: a practical approach to management. Cancer imaging : the official publication of the International Cancer Imaging Society 2011;11:48-51. https://doi.org/10.1102/1470-7330.2011.0008

    Article  Google Scholar 

  2. Jung SE, Lee JM, Rha SE, Byun JY, Jung JI, Hahn ST. CT and MR imaging of ovarian tumors with emphasis on differential diagnosis. Radiographics : a review publication of the Radiological Society of North America, Inc 2002;22(6):1305-1325. https://doi.org/10.1148/rg.226025033

  3. Boos J, Brook OR, Fang J, Brook A, Levine D. Ovarian Cancer: Prevalence in Incidental Simple Adnexal Cysts Initially Identified in CT Examinations of the Abdomen and Pelvis. Radiology 2018;286(1):196-204. https://doi.org/10.1148/radiol.2017162139

    Article  PubMed  Google Scholar 

  4. Slanetz PJ, Hahn PF, Hall DA, Mueller PR. The frequency and significance of adnexal lesions incidentally revealed by CT. AJR American journal of roentgenology 1997;168(3):647-650. https://doi.org/10.2214/ajr.168.3.9057508

    Article  CAS  PubMed  Google Scholar 

  5. Patel MD, Ascher SM, Paspulati RM, Shanbhogue AK, Siegelman ES, Stein MW, Berland LL. Managing incidental findings on abdominal and pelvic CT and MRI, part 1: white paper of the ACR Incidental Findings Committee II on adnexal findings. Journal of the American College of Radiology : JACR 2013;10(9):675-681. https://doi.org/10.1016/j.jacr.2013.05.023

    Article  PubMed  Google Scholar 

  6. Forstner R, Thomassin-Naggara I, Cunha TM, Kinkel K, Masselli G, Kubik-Huch R, Spencer JA, Rockall A. ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update. European radiology 2017;27(6):2248-2257. https://doi.org/10.1007/s00330-016-4600-3

    Article  PubMed  Google Scholar 

  7. Shinagare AB, Alper E, Wang A, Ip IK, Khorasani R. Impact of a Multifaceted Information Technology-Enabled Intervention on the Adoption of ACR White Paper Follow-Up Recommendations for Incidental Adnexal Lesions Detected on CT. AJR American journal of roentgenology 2019:1-7. https://doi.org/10.2214/ajr.18.20468

  8. Andreotti RF, Timmerman D, Strachowski LM, Froyman W, Benacerraf BR, Bennett GL, Bourne T, Brown DL, Coleman BG, Frates MC, Goldstein SR, Hamper UM, Horrow MM, Hernanz-Schulman M, Reinhold C, Rose SL, Whitcomb BP, Wolfman WL, Glanc P. O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. Radiology 2019:191150. https://doi.org/10.1148/radiol.2019191150

  9. Levine D, Patel MD, Suh-Burgmann EJ, Andreotti RF, Benacerraf BR, Benson CB, Brewster WR, Coleman BG, Doubilet PM, Goldstein SR, Hamper UM, Hecht JL, Horrow MM, Hur HC, Marnach ML, Pavlik E, Platt LD, Puscheck E, Smith-Bindman R, Brown DL. Simple Adnexal Cysts: SRU Consensus Conference Update on Follow-up and Reporting. Radiology 2019;293(2):359-371. https://doi.org/10.1148/radiol.2019191354

    Article  PubMed  Google Scholar 

  10. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics : a review publication of the Radiological Society of North America, Inc 2017;37(5):1483-1503. https://doi.org/10.1148/rg.2017170056

  11. Thomas R, Qin L, Alessandrino F, Sahu SP, Guerra PJ, Krajewski KM, Shinagare A. A review of the principles of texture analysis and its role in imaging of genitourinary neoplasms. Abdominal radiology (New York) 2018. https://doi.org/10.1007/s00261-018-1832-5

    Article  PubMed Central  Google Scholar 

  12. Chee CG, Kim YH, Lee KH, Lee YJ, Park JH, Lee HS, Ahn S, Kim B. CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis. PloS one 2017;12(8):e0182883. https://doi.org/10.1371/journal.pone.0182883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan TW, Malhi H, Varghese B, Cen S, Hwang D, Aron M, Rajarubendra N, Desai M, Duddalwar V. Computed tomography-based texture analysis of bladder cancer: differentiating urothelial carcinoma from micropapillary carcinoma. Abdominal radiology (New York) 2019;44(1):201-208. https://doi.org/10.1007/s00261-018-1694-x

    Article  Google Scholar 

  14. Lubner MG, Stabo N, Abel EJ, Del Rio AM, Pickhardt PJ. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. AJR American journal of roentgenology 2016;207(1):96-105. https://doi.org/10.2214/ajr.15.15451

    Article  PubMed  Google Scholar 

  15. Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of pancreatic cancer. European radiology 2019;29(3):1067-1073. https://doi.org/10.1007/s00330-018-5662-1

    Article  PubMed  Google Scholar 

  16. Vargas HA, Veeraraghavan H, Micco M, Nougaret S, Lakhman Y, Meier AA, Sosa R, Soslow RA, Levine DA, Weigelt B, Aghajanian C, Hricak H, Deasy J, Snyder A, Sala E. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. European radiology 2017;27(9):3991-4001. https://doi.org/10.1007/s00330-017-4779-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meier A, Veeraraghavan H, Nougaret S, Lakhman Y, Sosa R, Soslow RA, Sutton EJ, Hricak H, Sala E, Vargas HA. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer. Abdominal radiology (New York) 2019;44(6):2040-2047. https://doi.org/10.1007/s00261-018-1840-5

    Article  Google Scholar 

  18. Beer L, Sahin H, Bateman NW, Blazic I, Vargas HA, Veeraraghavan H, Kirby J, Fevrier-Sullivan B, Freymann JB, Jaffe CC, Brenton J, Miccó M, Nougaret S, Darcy KM, Maxwell GL, Conrads TP, Huang E, Sala E. Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: an exploratory analysis. European radiology 2020. https://doi.org/10.1007/s00330-020-06755-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, Suri JS. Ovarian tissue characterization in ultrasound: a review. Technology in cancer research & treatment 2015;14(3):251-261. https://doi.org/10.1177/1533034614547445

    Article  CAS  Google Scholar 

  20. Acharya UR, Sree SV, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization and classification using ultrasound-a new online paradigm. Journal of digital imaging 2013;26(3):544-553. https://doi.org/10.1007/s10278-012-9553-8

    Article  PubMed  Google Scholar 

  21. Nougaret S, Tardieu M, Vargas HA, Reinhold C, Vande Perre S, Bonanno N, Sala E, Thomassin-Naggara I. Ovarian cancer: An update on imaging in the era of radiomics. Diagnostic and interventional imaging 2018. https://doi.org/10.1016/j.diii.2018.11.007

    Article  PubMed  Google Scholar 

  22. Levine D, Brown DL, Andreotti RF, Benacerraf B, Benson CB, Brewster WR, Coleman B, DePriest P, Doubilet PM, Goldstein SR, Hamper UM, Hecht JL, Horrow M, Hur HC, Marnach M, Patel MD, Platt LD, Puscheck E, Smith-Bindman R. Management of asymptomatic ovarian and other adnexal cysts imaged at US Society of Radiologists in Ultrasound consensus conference statement. Ultrasound quarterly 2010;26(3):121-131. https://doi.org/10.1097/RUQ.0b013e3181f09099

    Article  PubMed  Google Scholar 

  23. McLemore MR, Miaskowski C, Aouizerat BE, Chen LM, Dodd MJ. Epidemiological and genetic factors associated with ovarian cancer. Cancer nursing 2009;32(4):281-288; quiz 289-290. https://doi.org/10.1097/NCC.0b013e31819d30d6

  24. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3(1):32-35. https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  25. Perkins NJ, Schisterman EF. The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve. American journal of epidemiology 2006;163(7):670-675. https://doi.org/10.1093/aje/kwj063

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC bioinformatics 2011;12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuhn M, Contributions from Jed Wing SW, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and Tyler Hunt. Package ‘caret’: Classification and Regression Training. 2019.

  28. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights into imaging 2012;3(6):573-589. https://doi.org/10.1007/s13244-012-0196-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanania AN, Bantis LE, Feng Z, Wang H, Tamm EP, Katz MH, Maitra A, Koay EJ. Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 2016;7(52):85776-85784. https://doi.org/10.18632/oncotarget.11769

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? European journal of radiology 2013;82(2):342-348. https://doi.org/10.1016/j.ejrad.2012.10.023

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyesun Park.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethical approval

Institutional Review Board approval was obtained, and informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Qin, L., Guerra, P. et al. Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy. Abdom Radiol 46, 2376–2383 (2021). https://doi.org/10.1007/s00261-020-02668-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02668-3

Keywords

Navigation