Skip to main content

Advertisement

Log in

Ovarian Tumor Characterization and Classification Using Ultrasound—A New Online Paradigm

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Image mining algorithms have been predominantly used to give the physicians a more objective, fast, and accurate second opinion on the initial diagnosis made from medical images. The objective of this work is to develop an adjunct computer-aided diagnostic technique that uses 3D ultrasound images of the ovary to accurately characterize and classify benign and malignant ovarian tumors. In this algorithm, we first extract features based on the textural changes and higher-order spectra information. The significant features are then selected and used to train and evaluate the decision tree (DT) classifier. The proposed technique was validated using 1,000 benign and 1,000 malignant images, obtained from ten patients with benign and ten with malignant disease, respectively. On evaluating the classifier with tenfold stratified cross validation, the DT classifier presented a high accuracy of 97 %, sensitivity of 94.3 %, and specificity of 99.7 %. This high accuracy was achieved because of the use of the novel combination of the four features which adequately quantify the subtle changes and the nonlinearities in the pixel intensity variations. The rules output by the DT classifier are comprehensible to the end-user and, hence, allow the physicians to more confidently accept the results. The preliminary results show that the features are discriminative enough to yield good accuracy. Moreover, the proposed technique is completely automated, accurate, and can be easily written as a software application for use in any computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. NCI (National Cancer Institute) on ovarian cancer. Information website http://www.cancer.gov/cancertopics/types/ovarian. Accessed October 4, 2011

  2. Bast Jr, RC, Badgwell D, Lu Z, et al: New tumor markers: CA125 and beyond. Int J Gynecol Cancer 15:274–281, 2005

    Article  PubMed  Google Scholar 

  3. Zaidi SI: Fifty years of progress in gynecologic ultrasound. Int J Gynaecol Obstet 99:195–197, 2007

    Article  PubMed  Google Scholar 

  4. Menon U, Talaat A, Rosenthal AN, et al: Performance of ultrasound as a second line test to serum CA125 in ovarian cancer screening. BJOG 107:165–169, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Kim KA, Park CM, Lee JH, et al: Benign ovarian tumors with solid and cystic components that mimic malignancy. AJR Am J Roentgenol 182:1259–1265, 2004

    Article  PubMed  Google Scholar 

  6. Lenic M, Zazula D, Cigale, B: Segmentation of ovarian ultrasound images using single template cellular neural networks trained with support vector machines. In: Proceedings of 20th IEEE International Symposium on Computer-Based Medical Systems, 2007, 205–212

  7. Hiremath PS, Tegnoor JR: Recognition of follicles in ultrasound images of ovaries using geometric features. In: Proceedings of International Conference on Biomedical and Pharmaceutical Engineering, 2009, 1–8

  8. Deng Y, Wang Y, Chen P: Automated detection of polycystic ovary syndrome from ultrasound images. In: Proceedings of the 30th Annual International IEEE EMBS Conference, 2008, 4772–4775

  9. Sohail ASM, Rahman MM, Bhattacharya P, Krishnamurthy S, Mudur SP: Retrieval and classification of ultrasound images of ovarian cysts combining texture features and histogram moments. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010, 288–291

  10. Sohail ASM, Bhattacharya P, Mudur SP, Krishnamurthy S: Selection of optimal texture descriptors for retrieving ultrasound medical images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, 10–16

  11. Renz C, Rajapakse JC, Razvi K, Liang SKC: Ovarian cancer classification with missing data. In: Proceedings of 9th International Conference on Neural Information Processing 2, 2002, 809–813

  12. Assareh A, Moradi MH: Extracting efficient fuzzy if-then rules from mass spectra of blood samples to early diagnosis of ovarian cancer. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2007, 502–506

  13. Tan TZ, Quek C, Ng GS, Razvi K: Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif Intell Med 43:207–222, 2008

    Article  PubMed  Google Scholar 

  14. Meng H, Hong W, Song J, Wang L: Feature extraction and analysis of ovarian cancer proteomic mass spectra. In: 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, 668–671

  15. Tang KL, Li TH, Xiong WW, Chen K: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinforma 11:109, 2010

    Article  Google Scholar 

  16. Petricoin F: Use of proteomic patterns serum to identify ovarian cancer. Lancet 359:572–577, 2002

    Article  PubMed  CAS  Google Scholar 

  17. Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S: Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol 106:21–30, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Brüning J, Becker R, Entezami M, Loy V, Vonk R, Weitzel H, et al: Knowledge-based system ADNEXPERT to assist the sonographic diagnosis of adnexal tumors. Methods Inf Med 36:201–206, 1997

    PubMed  Google Scholar 

  19. Biagiotti R, Desii C, Vanzi E, Gacci G: Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology 210:399–403, 1999

    PubMed  CAS  Google Scholar 

  20. Zimmer Y, Tepper R, Akselrod S: An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med Biol 29:1561–1570, 2003

    Article  PubMed  Google Scholar 

  21. Lucidarme O, Akakpo JP, Granberg S, et al: A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol 20:1822–1830, 2010

    Article  PubMed  Google Scholar 

  22. Bellman RE: Dynamic programming. Chemsford, MA: Courier Dover Publications, 2003

  23. Hata T, Yanagihara T, Hayashi K, Yamashiro C, et al: Three-dimensional ultrasonographic evaluation of ovarian tumours: a preliminary study. Hum Reprod 14:858–861, 1999

    Article  PubMed  CAS  Google Scholar 

  24. Laban M, Metawee H, Elyan A, Kamal M, Kamel M, Mansour G: Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors. Int J Gynaecol Obstet 99:201–205, 2007

    Article  PubMed  CAS  Google Scholar 

  25. Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA: Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol 82:40–48, 2001

    Article  PubMed  CAS  Google Scholar 

  26. Okugawa K, Hirakawa T, Fukushima K, Kamura T, Amada S, Nakano H: Relationship between age, histological type, and size of ovarian tumors. Int J Gynaecol Obstet 74:45–50, 2001

    Article  PubMed  CAS  Google Scholar 

  27. Webb JAW: Ultrasound in ovarian carcinoma. In: Reznek R Ed. Cancer of the ovary. Cambridge University Press, Cambridge, 2006, pp 94–111

    Chapter  Google Scholar 

  28. Guerriero S, Alcazar JL, Pascual MA, Ajossa S, Gerada M, Bargellini R, Virgilio B, Melis GB: Intraobserver and interobserver agreement of grayscale typical ultrasonographic patterns for the diagnosis of ovarian cancer. Ultrasound Med Biol 34:1711–1716, 2008

    Article  PubMed  Google Scholar 

  29. Testa AC, Gaurilcikas A, Licameli A, Mancari R, Di Legge A, Malaggese M, Mascilini F, Zannoni GF, Scambia G, Ferrandina G: Sonographic features of primary ovarian fibrosarcoma: a report of two cases. Ultrasound Obstet Gynecol 33:112–115, 2009

    Article  PubMed  CAS  Google Scholar 

  30. Park SB, Lee JW, Kim SK: Content-based image classification using a neural network. Pattern Recogn Lett 25:287–300, 2004

    Article  Google Scholar 

  31. Gonzalez C, Woods RE: Digital image processing, New Jersey: Prentice Hall, 2001

  32. Fortin C: Fractal dimension in the analysis of medical images. IEEE Eng Med Biol 11:65–71, 1992

    Article  Google Scholar 

  33. Mandelbrot BB: The fractal geometry of nature. WH Freeman Ed, NY, 1982

    Google Scholar 

  34. Biswas MK, Ghose T, Guha S, Biswas PK: Fractal dimension estimation for texture images: a parallel approach. Pattern Recogn Lett 19:309–313, 1998

    Article  Google Scholar 

  35. Haralick RM, Shanmugam K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621, 1973

    Article  Google Scholar 

  36. Ramana KV, Ramamoorthy B: Statistical methods to compare the texture features of machined surfaces. Pattern Recognition 29:1447–1459, 1996

    Article  Google Scholar 

  37. Galloway MM: Texture classification using gray level run length. Comput Graph Image Process 4:172–179, 1975

    Article  Google Scholar 

  38. Nikias C, Petropulu A: Higher-order spectral analysis, Englewood Cliffs, NJ: Prentice-Hall, 1997

  39. Chua KC, Chandran V, Acharya UR, Lim C: Application of higher order spectra to identify epileptic EEG. J Med Syst 1–9, 2010. doi:10.1007/s10916-010-9433-z

  40. Acharya UR, Chua KC, Lim TC, Dorithy, Suri JS: Automatic identification of epileptic EEG signals using nonlinear parameters. J Med Mech Biol 9:539–553, 2009

    Article  Google Scholar 

  41. Chua KC, Chandran V, Acharya UR, Lim CM: Analysis of epileptic EEG signals using higher order spectra. J Med Eng Technol 33:42–50, 2009

    Article  PubMed  CAS  Google Scholar 

  42. Ramm A, Katsevich A: The Radon transform and local tomography. Boca Raton, FL: CRC Press, 1996

  43. Box JF: Guinness, gosset, fisher, and small samples. Statist Sci 2:45–52, 1987

    Article  Google Scholar 

  44. Larose DT: Decision trees. In: Discovering knowledge in data: an introduction to data mining, New Jersey, USA: Wiley Interscience, 2004: 108–126

  45. Acharya UR, Sree SV, Krishnan MM, Saba L, Molinari F, Guerriero S, Suri JS: Ovarian tumor characterization using 3D ultrasound. Technol Cancer Res Treat, 11:543-552;2012

  46. Philpotts LE: Can computer-aided detection be detrimental to mammographic interpretation? Radiology 253(1):17–22, 2009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vinitha Sree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, U.R., Sree, S.V., Saba, L. et al. Ovarian Tumor Characterization and Classification Using Ultrasound—A New Online Paradigm. J Digit Imaging 26, 544–553 (2013). https://doi.org/10.1007/s10278-012-9553-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9553-8

Keywords

Navigation