Skip to main content

Advertisement

Log in

Imaging patients with renal impairment

  • Invited article
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Imaging with intravascular contrast media is generally considered safe, particularly in patients without renal failure. However, as renal function deteriorates, the potential risk of nonallergic-type adverse events increases. This presents a unique challenge, particularly when the use of intravenous contrast media is deemed essential for diagnostic purposes. Following a discussion regarding the definition and epidemiology of kidney injury, this review focuses on the evolving understanding of both contrast-induced nephropathy and nephrogenic systemic fibrosis and discusses preventative strategies aimed at minimizing the risk of developing these entities. Alternative non-contrast imaging techniques are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Poff J, Hecht E, Ramchandani P (2011) Renal imaging in patients with renal impairment. Curr Urol Rep 12(1):24–33. doi:10.1007/s11934-010-0158-9

    Article  PubMed  Google Scholar 

  2. American College of Radiology (2015) Committee on drugs and contrast media. ACR manual on contrast media version 10.1

  3. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8(4):R204

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta RL, Kellum JA, Shah SV, et al. (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31

    Article  PubMed  PubMed Central  Google Scholar 

  5. Davenport MS, Khalatbari S, Cohan RH, et al. (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 268(3):719–728. doi:10.1148/radiol.13122276

    Article  PubMed  Google Scholar 

  6. Davenport MS, Khalatbari S, Dillman JR, et al. (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology 267(1):94–105. doi:10.1148/radiol.12121394

    Article  PubMed  PubMed Central  Google Scholar 

  7. McDonald RJ, McDonald JS, Carter RE, et al. (2014) Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 273(3):714–725

    Article  PubMed  Google Scholar 

  8. Eknoyan G, Levin N (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification-foreword. Am J Kidney Dis 39(2):S14–S266

    Article  Google Scholar 

  9. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Inter Suppl 1–150

  10. Levey AS, de Jong PE, Coresh J, et al. (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 80(1):17–28

    Article  PubMed  Google Scholar 

  11. Stevens LA, Levey AS (2009) Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 20(11):2305–2313

    Article  PubMed  Google Scholar 

  12. Stevens LA, Schmid CH, Greene T, et al. (2010) Comparative performance of the CKD epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease (MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis 56(3):486–495

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levey AS, Bosch JP, Lewis JB, et al. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130(6):461–470

    Article  CAS  PubMed  Google Scholar 

  14. Levey AS, Eckardt K-U, Tsukamoto Y, et al. (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67(6):2089–2398

    Article  PubMed  Google Scholar 

  15. Levin A, Stevens PE (2014) Summary of KDIGO 2012 CKD guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85(1):49–61

    Article  PubMed  Google Scholar 

  16. Davenport MS, Khalatbari S, Cohan RH, Ellis JH (2013) Contrast medium–induced nephrotoxicity risk assessment in adult inpatients: a comparison of serum creatinine level–and estimated glomerular filtration rate–based screening methods. Radiology 269(1):92–100

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rydahl C, Thomsen HS, Marckmann P (2008) High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol 43(2):141–144

    Article  CAS  PubMed  Google Scholar 

  18. Thomsen H, Bellin M-F, Jakobsen J, Webb JW (2014) Contrast media classification and terminology. In: Thomsen HS, Webb JAW (eds). Contrast media. Medical radiology. Berlin: Springer, pp 3–11. doi:10.1007/174_2013_864

  19. Morcos S, Thomsen H (2001) Adverse reactions to iodinated contrast media. Eur Radiol 11(7):1267–1275

    Article  CAS  PubMed  Google Scholar 

  20. Beckett KR, Moriarity AK, Langer JM (2015) Safe use of contrast media: what the radiologist needs to know. RadioGraphics 35(6):1738–1750. doi:10.1148/rg.2015150033

    Article  PubMed  Google Scholar 

  21. Davenport MS, Cohan RH, Ellis JH (2015) Contrast media controversies in 2015: imaging patients with renal impairment or risk of contrast reaction. Am J Roentgenol 204(6):1174–1181. doi:10.2214/AJR.14.14259

    Article  Google Scholar 

  22. Katzberg RW, Lamba R (2009) Contrast-induced nephropathy after intravenous administration: fact or fiction? Radiol Clin North Am 47(5):789–800

    Article  PubMed  Google Scholar 

  23. Bartels ED, Brun G, Gammeltoft A, GjØrup PA (1954) Acute Annria following intravenous pyelography in a patient with myelomatosis. Acta Medica Scand 150(4):297–302

    Article  CAS  Google Scholar 

  24. Murphy SW, Barrett BJ, Parfrey PS (2000) Contrast nephropathy. J Am Soc Nephrol 11(1):177–182

    CAS  PubMed  Google Scholar 

  25. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT (1983) Hospital-acquired renal insufficiency: a prospective study. Am J Med 74(2):243–248

    Article  CAS  PubMed  Google Scholar 

  26. Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39(5):930–936

    Article  PubMed  Google Scholar 

  27. Rao QA, Newhouse JH (2006) Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis 1. Radiology 239(2):392–397

    Article  PubMed  Google Scholar 

  28. Moore R, Steinberg E, Powe N, et al. (1992) Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial. Radiology 182(3):649–655

    Article  CAS  PubMed  Google Scholar 

  29. Lufft V, Hoogestraat-Lufft L, Fels LM, et al. (2002) Contrast media nephropathy: intravenous CT angiography versus intraarterial digital subtraction angiography in renal artery stenosis: a prospective randomized trial. Am J Kidney Dis 40(2):236–242

    Article  PubMed  Google Scholar 

  30. Cramer BC, Parfrey PS, Hutchinson TA, et al. (1985) Renal function following infusion of radiologic contrast material: a prospective controlled study. Arch Intern Med 145(1):87–89

    Article  CAS  PubMed  Google Scholar 

  31. Heller C, Knapp J, Halliday J, O’Connell D, Heller R (1991) Failure to demonstrate contrast nephrotoxicity. Med J Australia 155(5):329–332

    CAS  PubMed  Google Scholar 

  32. Newhouse JH, Kho D, Rao QA, Starren J (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. Am J Roentgenol 191(2):376–382. doi:10.2214/AJR.07.3280

    Article  Google Scholar 

  33. Moore A, Dickerson E, Dillman JR, et al. (2014) Incidence of nonconfounded post-computed tomography acute kidney injury in hospitalized patients with stable renal function receiving intravenous iodinated contrast material. Curr Probl Diagn Radiol 43(5):237–241

    Article  PubMed  Google Scholar 

  34. McDonald JS, McDonald RJ, Comin J, et al. (2013) Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology 267(1):119–128

    Article  PubMed  Google Scholar 

  35. Davenport MS, Cohan RH, Khalatbari S, Ellis JH (2014) The challenges in assessing contrast-induced nephropathy: where are we now? Am J Roentgenol 202(4):784–789

    Article  Google Scholar 

  36. McDonald JS, McDonald RJ, Carter RE, et al. (2014) Risk of intravenous contrast material–mediated acute kidney injury: a propensity score–matched study stratified by baseline-estimated glomerular filtration rate. Radiology 271(1):65–73

    Article  PubMed  Google Scholar 

  37. McDonald RJ, McDonald JS, Bida JP, et al. (2013) Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology 267(1):106–118

    Article  PubMed  Google Scholar 

  38. McDonald RJ, McDonald JS, Newhouse JH, Davenport MS (2015) Controversies in contrast material-induced acute kidney injury: closing in on the truth? Radiology 277(3):627–632

    Article  PubMed  Google Scholar 

  39. McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103(5):368–375

    Article  CAS  PubMed  Google Scholar 

  40. Nikolsky E, Mehran R, Turcot D, et al. (2004) Impact of chronic kidney disease on prognosis of patients with diabetes mellitus treated with percutaneous coronary intervention. Am J Cardiol 94(3):300–305

    Article  PubMed  Google Scholar 

  41. Chao C (2013) Epidemiology, clinical features and diagnosis of contrast induced nephropathy: a brief review. Gen Med 1(102):2

    Google Scholar 

  42. Rihal CS, Textor SC, Grill DE, et al. (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105(19):2259–2264

    Article  PubMed  Google Scholar 

  43. Dashti-Khavidaki S, Moghaddas A, Heydari B, Khalili H, Lessan-Pezeshki M (2013) Statins against drug-induced nephrotoxicity. J Pharm Pharm Sci 16(4):588–608

    PubMed  Google Scholar 

  44. Goergen SK, Rumbold G, Compton G, Harris C (2009) Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin 1. Radiology 254(1):261–269

    Article  Google Scholar 

  45. Elicker BM, Cypel YS, Weinreb JC (2006) IV contrast administration for CT: a survey of practices for the screening and prevention of contrast nephropathy. Am J Roentgenol 186(6):1651–1658

    Article  Google Scholar 

  46. Herts BR, Schneider E, Poggio ED, Obuchowski NA, Baker ME (2008) Identifying outpatients with renal insufficiency before contrast-enhanced CT by using estimated glomerular filtration rates versus serum creatinine levels 1. Radiology 248(1):106–113

    Article  PubMed  Google Scholar 

  47. Kooiman J, Seth M, Share D, Dixon S, Gurm HS (2014) The association between contrast dose and renal complications post PCI across the continuum of procedural estimated risk. PloS One 9(3):e90233.

  48. Trivedi H, Foley WD (2010) Contrast-induced nephropathy after a second contrast exposure. Ren Fail 32(7):796–801

    Article  CAS  PubMed  Google Scholar 

  49. Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF (2012) Epidemiology of contrast material–induced nephropathy in the era of hydration. Radiology 263(3):706–713

    Article  PubMed  Google Scholar 

  50. Barrett B, Carlisle E (1993) Metaanalysis of the relative nephrotoxicity of high-and low-osmolality iodinated contrast media. Radiology 188(1):171–178

    Article  CAS  PubMed  Google Scholar 

  51. McCullough PA, Bertrand ME, Brinker JA, Stacul F (2006) A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 48(4):692–699

    Article  CAS  PubMed  Google Scholar 

  52. Feldkamp T, Baumgart D, Elsner M, et al. (2006) Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol 66(5):322–330

    Article  CAS  PubMed  Google Scholar 

  53. Heinrich MC, Häberle L, Müller V, Bautz W, Uder M (2009) Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials 1. Radiology 250(1):68–86

    Article  PubMed  Google Scholar 

  54. Au TH, Bruckner A, Mohiuddin SM, Hilleman DE (2014) The prevention of contrast-induced nephropathy. Ann Pharmacother 48(10):1332–1342

    Article  PubMed  Google Scholar 

  55. Ellis JH, Cohan RH (2009) Reducing the risk of contrast-induced nephropathy: a perspective on the controversies. Am J Roentgenol 192(6):1544–1549

    Article  Google Scholar 

  56. Jakobsen J, Berg K, Waaler A, Andrew E (1990) Renal effects of the non-ionic contrast medium iopentol after intravenous injection in healthy volunteers. Acta Radiol 31(1):87–91

    Article  CAS  PubMed  Google Scholar 

  57. Ellis JH, Cohan RH (2009) Prevention of contrast-induced nephropathy: an overview. Radiol Clin North Am 47(5):801–811

    Article  PubMed  Google Scholar 

  58. Thomsen HS (2007) Current evidence on prevention and management of contrast-induced nephropathy. Eur Radiol Suppl 17(6):33–37

    Article  Google Scholar 

  59. Hiremath S, Akbari A, Shabana W, Fergusson DA, Knoll GA (2013) Prevention of contrast-induced acute kidney injury: is simple oral hydration similar to intravenous? A systematic review of the evidence. PLoS ONE 8(3):e60009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mueller C, Buerkle G, Buettner HJ, et al. (2002) Prevention of contrast media–associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162(3):329–336

    Article  CAS  PubMed  Google Scholar 

  61. Merten GJ, Burgess WP, Gray LV, et al. (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291(19):2328–2334

    Article  CAS  PubMed  Google Scholar 

  62. Navaneethan SD, Singh S, Appasamy S, Wing RE, Sehgal AR (2009) Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 53(4):617–627

    Article  CAS  PubMed  Google Scholar 

  63. Zoungas S, Ninomiya T, Huxley R, et al. (2009) Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 151(9):631–638

    Article  PubMed  Google Scholar 

  64. Dussol B, Morange S, Loundoun A, Auquier P, Berland Y (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21(8):2120–2126

    Article  CAS  PubMed  Google Scholar 

  65. Tepel M, Van Der Giet M, Schwarzfeld C, et al. (2000) Prevention of radiographic-contrast-agent–induced reductions in renal function by acetylcysteine. N Engl J Med 343(3):180–184

    Article  CAS  PubMed  Google Scholar 

  66. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148(4):284–294

    Article  PubMed  Google Scholar 

  67. Stenstrom DA, Muldoon LL, Armijo-Medina H, et al. (2008) N-acetylcysteine use to prevent contrast medium–induced nephropathy: premature phase III trials. J Vasc Interv Radiol 19(3):309–318

    Article  PubMed  Google Scholar 

  68. Hoffmann U, Fischereder M, Krüger B, Drobnik W, Krämer BK (2004) The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 15(2):407–410

    Article  CAS  PubMed  Google Scholar 

  69. Bagshaw SM, Ghali WA (2005) Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Arch Intern Med 165(10):1087–1093

    Article  PubMed  Google Scholar 

  70. Ix JH, McCulloch CE, Chertow GM (2004) Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transpl 19(11):2747–2753

    Article  CAS  Google Scholar 

  71. Solomon R, Werner C, Mann D, D’Elia J, Silva P (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331(21):1416–1420

    Article  CAS  PubMed  Google Scholar 

  72. Singh N, Lee JZ, Huang JJ, et al. (2014) Benefit of statin pretreatment in prevention of contrast-induced nephropathy in different adult patient population: systematic review and meta-analysis. Open Heart 1(1):e000127

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bonetti P, Lerman L, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J 24(3):225–248

    Article  CAS  PubMed  Google Scholar 

  74. Goldenberg I, Matetzky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. Can Med Assoc J 172(11):1461–1471

    Article  Google Scholar 

  75. Cruz DN, Perazella MA, Bellomo R, et al. (2006) Extracorporeal blood purification therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Kidney Dis 48(3):361–371

    Article  PubMed  Google Scholar 

  76. Lehnert T, Keller E, Gondolf K, et al. (1998) Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol Dial Transpl 13(2):358–362

    Article  CAS  Google Scholar 

  77. Marenzi G, Marana I, Lauri G, et al. (2003) The prevention of radiocontrast-agent–induced nephropathy by hemofiltration. N Engl J Med 349(14):1333–1340

    Article  CAS  PubMed  Google Scholar 

  78. Sterling KA, Tehrani T, Rudnick MR (2008) Clinical significance and preventive strategies for contrast-induced nephropathy. Curr Opin Nephrol Hypertens 17(6):616–623

    Article  PubMed  Google Scholar 

  79. Morcos S, Thomsen H, Webb J (2002) Members of contrast media safety committee of the european society of urogenital radiology (ESUR). Dialysis and contrast media. Eur Radiol 12(12):3026–3030

    PubMed  Google Scholar 

  80. Cowper SE, Robin HS, Steinberg SM, et al. (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356(9234):1000–1001

    Article  CAS  PubMed  Google Scholar 

  81. Besheli LD, Aran S, Shaqdan K, Kay J, Abujudeh H (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69(7):661–668

    Article  Google Scholar 

  82. Braverman IM, Cowper S (2010) Nephrogenic systemic fibrosis. F1000 medicine reports 2

  83. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis 1. Radiology 242(3):647–649

    Article  PubMed  Google Scholar 

  84. Marckmann P, Skov L, Rossen K, Thomsen H (2008) Clinical manifestation of gadodiamide-related nephrogenic systemic fibrosis. Clin Nephrol 69(3):161–168

    Article  CAS  PubMed  Google Scholar 

  85. Marckmann P, Skov L (2009) Nephrogenic systemic fibrosis: clinical picture and treatment. Radiol Clin North Am 47(5):833–840

    Article  PubMed  Google Scholar 

  86. Weller A, Barber JL, Olsen ØE (2014) Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol 29(10):1927–1937

    Article  PubMed  Google Scholar 

  87. Thomsen HS, Marckmann P, Logager VB (2008) Update on nephrogenic systemic fibrosis. Magn Reson Imaging Clin N Am 16(4):551–560

    Article  PubMed  Google Scholar 

  88. Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transpl 21(4):1104–1108

    Article  CAS  Google Scholar 

  89. Marckmann P, Skov L, Rossen K, et al. (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362

    Article  PubMed  Google Scholar 

  90. Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66(2):230–234

    Article  PubMed  Google Scholar 

  91. Bardin T, Richette P (2010) Nephrogenic systemic fibrosis. Curr Opin Rheumatol 22(1):54–58

    Article  PubMed  Google Scholar 

  92. Thomsen HS (2009) Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin North Am 47(5):827–831

    Article  PubMed  Google Scholar 

  93. Food and Drug Administration (September 9th 2010) Press release. http://www.fda.gov/Drugs/DrugSafety/ucm223966.htm. Accessed December 21st 2015

  94. Thomsen HS, Webb JAW (2014) Appendix A: ESUR guidelines on contrast media version 8.1. In: Contrast media. Springer, pp 257–274

  95. Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30(6):1298–1308

    Article  PubMed  Google Scholar 

  96. Prince MR, Zhang H, Morris M, et al. (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers 1. Radiology 248(3):807–816

    Article  PubMed  Google Scholar 

  97. Othersen JB, Maize JC, Woolson RF, Budisavljevic MN (2007) Nephrogenic systemic fibrosis after exposure to gadolinium in patients with renal failure. Nephrol Dial Transpl 22(11):3179–3185

    Article  CAS  Google Scholar 

  98. Broome DR, Girguis MS, Baron PW, et al. (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol 188(2):586–592

    Article  Google Scholar 

  99. Todd DJ, Kagan A, Chibnik LB, Kay J (2007) Cutaneous changes of nephrogenic systemic fibrosis: predictor of early mortality and association with gadolinium exposure. Arthritis Rheum 56(10):3433–3441

    Article  PubMed  Google Scholar 

  100. Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS (2007) Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transplant 22(11):3174–3178

    Article  CAS  PubMed  Google Scholar 

  101. Shibui K, Kataoka H, Sato N, et al. (2009) A case of NSF attributable to contrast MRI repeated in a patient with Stage 3 CKD at a renal function of eGFR > 30 mL/min/1.73 m2. Jpn J Nephrol 51:676

    Google Scholar 

  102. Kalb R, Helm T, Sperry H, et al. (2008) Gadolinium-induced nephrogenic systemic fibrosis in a patient with an acute and transient kidney injury. Br J Dermatol 158(3):607–610

    Article  CAS  PubMed  Google Scholar 

  103. Abu-Alfa AK (2011) Nephrogenic systemic fibrosis and gadolinium-based contrast agents. Adv Chronic Kidney Dis 18(3):188–198

    Article  PubMed  Google Scholar 

  104. Graziani G, Montanelli A, Brambilla S, Balzarini L (2009) Nephrogenic systemic fibrosis an unsolved riddle. J Nephrol 22(2):203–207

    PubMed  Google Scholar 

  105. Zhang B, Liang L, Chen W, Liang C, Zhang S (2015) An Updated Study to Determine Association between Gadolinium-Based Contrast Agents and Nephrogenic Systemic Fibrosis. PLoS ONE 10(6):e0129720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Reiter T, Ritter O, Prince MR, et al. (2012) Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shaw DR, Kessel DO (2006) The current status of the use of carbon dioxide in diagnostic and interventional angiographic procedures. Cardiovasc Interv Radiol 29(3):323–331

    Article  Google Scholar 

  108. Dunn DP, Kelsey NR, Lee KS, Smith MP, Mortele KJ (2015) Non-oncologic applications of diffusion-weighted imaging (DWI) in the genitourinary system. Abdom Imaging 40(6):1645–1654

    Article  PubMed  Google Scholar 

  109. Kono K, Inoue Y, Nakayama K, et al. (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22(6):1081–1088

    CAS  PubMed  Google Scholar 

  110. Zelhof B, Pickles M, Liney G, et al. (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 103(7):883–888

    Article  PubMed  Google Scholar 

  111. Bruegel M, Holzapfel K, Gaa J, et al. (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18(3):477–485

    Article  PubMed  Google Scholar 

  112. Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. Am J Roentgenol 194(2):438–445

    Article  Google Scholar 

  113. Bruining DH, Bhatnagar G, Rimola J et al (2015) CT and MR enterography in Crohn’s disease: current and future applications. Abdom Imaging 1–10

  114. Chan JHM, Tsui EYK, Luk SH, et al. (2001) MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging 25(2):110–113

    Article  CAS  PubMed  Google Scholar 

  115. Verswijvel G, Vandecaveye V, Gelin G, et al. (2002) Diffusion-weighted MR imaging in the evaluation of renal infection: preliminary results. Jbr-Btr 85(2):100–103

    CAS  PubMed  Google Scholar 

  116. Dumoulin CL, Cline HE, Souza SP, Wagle WA, Walker MF (1989) Three-dimensional time-of-flight magnetic resonance angiography using spin saturation. Magn Reson Med 11(1):35–46

    Article  CAS  PubMed  Google Scholar 

  117. Ivancevic MK, Geerts L, Weadock WJ, Chenevert TL (2009) Technical principles of MR angiography methods. Magn Reson Imaging Clin N Am 17(1):1–11

    Article  PubMed  Google Scholar 

  118. Wilson GJ, Maki JH (2009) Non–contrast-enhanced MR imaging of renal artery stenosis at 1.5 tesla. Magn Reson Imaging Clin N Am 17(1):13–27

    Article  PubMed  Google Scholar 

  119. Loubeyre P, Trolliet P, Cahen R, et al. (1996) MR angiography of renal artery stenosis: value of the combination of three-dimensional time-of-flight and three-dimensional phase-contrast MR angiography sequences. AJR Am J Roentgenol 167(2):489–494

    Article  CAS  PubMed  Google Scholar 

  120. Wyttenbach R, Braghetti A, Wyss M, et al. (2007) Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography 1. Radiology 245(1):186–195

    Article  PubMed  Google Scholar 

  121. Maki JH, Wilson GJ, Eubank WB, et al. (2007) Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs CE-MRA. J Magn Reson Imaging 26(4):966–973

    Article  PubMed  Google Scholar 

  122. Maki JH, Wilson GJ, Eubank WB, et al. (2007) Navigator-gated MR angiography of the renal arteries: a potential screening tool for renal artery stenosis. Am J Roentgenol 188(6):W540–W546

    Article  Google Scholar 

  123. Herborn CU, Watkins DM, Runge VM, et al. (2006) Renal arteries: comparison of steady-state free precession MR angiography and contrast-enhanced MR angiography 1. Radiology 239(1):263–268

    Article  PubMed  Google Scholar 

  124. Coenegrachts KL, Hoogeveen RM, Vaninbroukx JA, et al. (2004) High-spatial-resolution 3D balanced turbo field-echo technique for MR angiography of the renal arteries: initial experience 1. Radiology 231(1):237–242

    Article  PubMed  Google Scholar 

  125. Artz NS, Sadowski EA, Wentland AL, et al. (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29(1):74–82

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  PubMed  Google Scholar 

  127. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4):884–898

    Article  PubMed  Google Scholar 

  128. Pai AB, Garba AO (2012) Ferumoxytol: a silver lining in the treatment of anemia of chronic kidney disease or another dark cloud? J Blood Med 3:77

    PubMed  PubMed Central  Google Scholar 

  129. Wu Y, Briley-Saebo K, Xie J, et al. (2014) Inflammatory bowel disease: MR-and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model—pilot study. Radiology 271(2):400–407

    Article  PubMed  Google Scholar 

  130. Serkova NJ, Renner B, Larsen BA, et al. (2010) Renal Inflammation: targeted iron oxide nanoparticles for molecular MR imaging in mice 1. Radiology 255(2):517–526

    Article  PubMed  PubMed Central  Google Scholar 

  131. Neuwelt EA, Hamilton BE, Varallyay CG, et al. (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF) & quest. Kidney Int 75(5):465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ersoy H, Jacobs P, Kent CK, Prince MR (2004) Blood pool MR angiography of aortic stent-graft endoleak. Am J Roentgenol 182(5):1181–1186

    Article  Google Scholar 

  133. Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? 1. Radiology

  134. Piscaglia F, Bolondi L (2006) The safety of Sonovue® in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375

    Article  PubMed  Google Scholar 

  135. Serra C, Menozzi G, Labate AMM, et al. (2007) Ultrasound assessment of vascularization of the thickened terminal ileum wall in Crohn’s disease patients using a low-mechanical index real-time scanning technique with a second generation ultrasound contrast agent. Eur J Radiol 62(1):114–121

    Article  PubMed  Google Scholar 

  136. Tamai H, Takiguchi Y, Oka M, et al. (2005) Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med 24(12):1635–1640

    PubMed  Google Scholar 

  137. Catalano O, Cusati B, Nunziata A, Siani A (2006) Active abdominal bleeding: contrast-enhanced sonography. Abdom Imaging 31(1):9–16

    Article  CAS  PubMed  Google Scholar 

  138. Christiansen JP, Lindner JR (2005) Molecular and cellular imaging with targeted contrast ultrasound. Proc IEEE 93(4):809–818

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahan Mathur.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

Mahan Mathur declares that he has no conflict of interest Jeffrey C. Weinreb declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, M., Weinreb, J.C. Imaging patients with renal impairment. Abdom Radiol 41, 1108–1121 (2016). https://doi.org/10.1007/s00261-016-0709-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0709-8

Keywords

Navigation