Skip to main content

Advertisement

Log in

Biofilm systems as tools in biotechnological production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms’ physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng J 348:732–744

    Article  CAS  Google Scholar 

  • Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kacániová M, Knochel S, Lourenco A, Mergulhao F, Meyer RL, Nychas G, Simones M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351

    Article  CAS  PubMed  Google Scholar 

  • Beblawy S, Bursac T, Paquete C, Louro R, Clarke TA, Gescher J (2018) Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 109:571–583

    Article  CAS  PubMed  Google Scholar 

  • Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL and Thurston CF (1988) Applications of microbial electrochemistry. In Resources and applications of biotechnology. Palgrave Macmillan UK, London. pp. 363–374

  • Beyenal H and Babauta J (2013) Microsensors and microscale gradients in biofilms. Springer, Adv Biochem Eng Biotechnol, pp. 235–256.

  • Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR (2009) Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103:524–531

    Article  CAS  PubMed  Google Scholar 

  • Blauert F, Horn H, Wagner M (2015) Time-resolved biofilm deformation measurements using optical coherence tomography. Biotechnol Bioeng 112:1893–1905

    Article  CAS  PubMed  Google Scholar 

  • Bosire EM, Rosenbaum MA (2017) Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa. Front Microbiol 8:892

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwer EJ, Crowe PB (1988) Biological processes in drinking water treatment. J Am Water Works Assoc 80:82–93

    Article  CAS  Google Scholar 

  • Bursac T, Gralnick JA, Gescher J (2017) Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 114:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Cheng K-C, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    Article  CAS  PubMed  Google Scholar 

  • Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474

    Article  CAS  PubMed  Google Scholar 

  • Doll K, Rückel A, Kämpf P, Wende M, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41:1403–1416

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Förster AH, Beblawy S, Golitsch F, Gescher J (2017) Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnol Biofuels 10:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Yue X, Shi X, Ng KK, Ng HY (2017) Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: effects of solids retention time. Chem Eng J 309:397–408

    Article  CAS  Google Scholar 

  • Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94

    Article  CAS  PubMed  Google Scholar 

  • Gross R, Schmid A, Buehler K (2012) Catalytic biofilms: a powerful concept for future bioprocesses. In: Lear G, L. G (eds) Microbial biofilms. Caister Academic Press, Norfolk, pp 193–222

    Google Scholar 

  • Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH, Kabbeck T, Radtke CP, Krause S, Krolitzki E, Peschke T, Gasmi J, Rabe KS, Wagner M, Horn H, Hubbuch J, Gescher J, Niemeyer CM, (2017) Machine-assisted cultivation and analysis of biofilms. bioRxiv 210583.

  • He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219

    Article  CAS  Google Scholar 

  • Herrling MP, Weisbrodt J, Kirkland CM, Williamson NH, Lackner S, Codd SL, Seymour JD, Guthausen G, Horn H (2017) NMR investigation of water diffusion in different biofilm structures. Biotechnol Bioeng 114:2857–2867

    Article  CAS  PubMed  Google Scholar 

  • Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci 61:1347–1356

    Article  CAS  Google Scholar 

  • Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C (2009) Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem 393:197–206

    Article  CAS  PubMed  Google Scholar 

  • Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C (2010) Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. J Biophotonics 3:548–556

    Article  CAS  PubMed  Google Scholar 

  • Janczewski L, Trusek-Holownia A (2016) Biofilm-based membrane reactors – selected aspects of the application and microbial layer control. Desalin Water Treat 57:22909–22916

    Article  CAS  Google Scholar 

  • Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, Zengerle R, Kerzenmacher S (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146:386–392

    Article  CAS  PubMed  Google Scholar 

  • Kipf E, Zengerle R, Gescher J, Kerzenmacher S (2014) How does the choice of anode material influence electrical performance? A comparison of two microbial fuel cell model organisms. ChemElectroChem 1:1849–1853

    Article  CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  • Korneel Rabaey, Nico Boon, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408

    Article  CAS  PubMed  Google Scholar 

  • Kracke F, Lai B, Yu S, Krömer JO (2018) Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – a chance for metabolic engineering. Metab Eng 45:109–120

    Article  CAS  PubMed  Google Scholar 

  • Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32:645–655

    Article  CAS  PubMed  Google Scholar 

  • Lackner S, Terada A, Horn H, Henze M, Smets BF (2010) Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res 44:6073–6084

    Article  CAS  PubMed  Google Scholar 

  • Ledezma P, Greenman J, Ieropoulos I (2012) Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresour Technol 118:615–618

    Article  CAS  PubMed  Google Scholar 

  • Li W-W, Sheng G-P (2011) Microbial fuel cells in power generation and extended applications. Adv Biochem Eng/Biotechn 128:165–197

    Google Scholar 

  • Liu T, Yu Y-Y, Deng X-P, Ng CK, Cao B, Wang J-Y, Scott AR, Kjelleberg S, Song H (2015) Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol Bioeng 112:2051–2059

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390

    Article  CAS  PubMed  Google Scholar 

  • Martinez CM, Alvarez LH (2018) Application of redox mediators in bioelectrochemical systems. Biotechnol Adv 36:1412–1423

    Article  CAS  PubMed  Google Scholar 

  • Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115:2740–2750

    Article  CAS  PubMed  Google Scholar 

  • Melkus G, Rolletschek H, Fuchs J, Radchuk V, Grafahrend-Belau E, Sreenivasulu N, Rutten T, Weier D, Heinzel N, Schreiber F, Altmann T, Jakob PM, Borisjuk L (2011) Dynamic 13C/1H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnol J 9:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Muffler K, Lakatos M, Schlegel C, Strieth D, Kuhne S and Ulber R (2014) Application of biofilm bioreactors in white biotechnology. In Productive Biofilms 123–161.

  • Neu TR and Lawrence JR (2014) Investigation of microbial biofilm structure by laser scanning microscopy. In Productive Biofilms pp. 1–51.

  • Neu TR, Lawrence JR (2015) Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol 23:233–242

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Daims H and Lemmer H (2009) FISH handbook for biological wastewater treatment : identification and quantification of microorganisms in activated sludge and biofilms by FISH, FISH Handbook for Biological Wastewater Treatment.

  • Percival SL, Vuotto C, Donelli G, Lipsky BA (2015) Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care 4:389–397

    Article  Google Scholar 

  • Picioreanu C, Blauert F, Horn H, Wagner M (2018) Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Res 145:588–598

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert P (1995) Design techniques of a computer program for the identification of processes and the simulation of water quality in aquatic systems. Environ Softw 10:199–210

    Article  Google Scholar 

  • Rittmann BE (2018) Biofilms, active substrata, and me. Water Res 132:135–145

    Article  CAS  PubMed  Google Scholar 

  • Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  PubMed  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seviour T, Derlon N, Dueholm MS, Flemming H-C, Girbal-Neuhauser E, Horn H, Kjelleberg S, Loosdrecht MCM, Lotti T, Malpei MF, Nerenberg R, Neu TR, Paul E, Yu H, Lin Y (2019) Extracellular polymeric substances of biofilms: suffering from an identity crisis. Water Res 151(1–7):1–7

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    Article  CAS  Google Scholar 

  • Staudt C, Horn H, Hempel D and Neu T (2003) Screening of lectins for staining lectin-specific glycoconjugates in the EPS of biofilms. In Biofilms in industry, medicine & Environmental Biotechnology. pp. 308–327.

  • Staudt C, Horn H, Hempel DC, Neu TR (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, Kerzenmacher S, Gescher J (2015) Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89–96

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Pirbadian S, El-Naggar MY, Jensen GJ (2018) Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci U S A 115:3246–3255

    Article  CAS  Google Scholar 

  • Sun D, Chen J, Huang H, Liu W, Ye Y, Cheng S (2016) The effect of biofilm thickness on electrochemical activity of Geobacter sulfurreducens. Int J Hydrog Energy 41:16523–16528

    Article  CAS  Google Scholar 

  • Thorn RMS, Austin AJ, Greenman J, Wilkins JPG, Davis PJ (2009) In vitro comparison of antimicrobial activity of iodine and silver dressings against biofilms. J Wound Care 18:343–346

    Article  CAS  PubMed  Google Scholar 

  • Timberlake DL, Strand SE, Williamson KJ (1988) Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm. Water Res 22:1513–1517

    Article  CAS  Google Scholar 

  • van Benthum WAJ, van Loosdrecht MDM, Heijnen JJ (1997) Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor. Biotechnol Bioeng 53:397–405

    Article  PubMed  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  CAS  Google Scholar 

  • Wagner M, Horn H (2017) Optical coherence tomography in biofilm research: a comprehensive review. Biotechnol Bioeng 114:1386–1402

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Manz B, Volke F, Neu TR, Horn H (2010) Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy. Biotechnol Bioeng 107:172–181

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Neu TR and Flemming H-C (1999) What are bacterial extracellular polymeric substances? In Microbial extracellular polymeric substances. pp. 1–19.

  • Xiao Y, Zhao F (2017) Electrochemical roles of extracellular polymeric substances in biofilms. Curr Opin Electrochem 4:206–211

    Article  CAS  Google Scholar 

  • Yong Y-C, Yu Y-Y, Zhang X, Song H (2014) Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed 53:4480–4483

    Article  CAS  Google Scholar 

  • Zajdel TJ, Baruch M, Méhes G, Stavrinidou E, Berggren M, Maharbiz MM, Simon DT, Ajo-Franklins CM (2018) PEDOT:PSS-based multilayer bacterial-composite films for bioelectronics. Sci Rep 8:15293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Dirk Weuster-Botz (Technische Universität München) for discussing the simulation of acetotrophic bacteria growing on membranes.

Funding

The research of Harald Horn is supported by the German Research Foundation (DFG HO 1910/16-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Gescher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edel, M., Horn, H. & Gescher, J. Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 103, 5095–5103 (2019). https://doi.org/10.1007/s00253-019-09869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09869-x

Keywords

Navigation