Skip to main content
Log in

Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudonocardia spp. are receiving increasing attention due to their ability to biodegrade recalcitrant cyclic ether pollutants (e.g., 1,4-dioxane and tetrahydrofuran), as well as for their distinctive ecological niches (e.g., symbiosis with ants/plants and production of antibiotics). Isolating and characterizing Pseudonocardia spp. is thus important to discern their metabolic and physiological idiosyncrasies and advance their potential applications. However, slow growth, low cell yield, and dissimilar colony morphology hinder efficient isolation of Pseudonocardia using conventional plating methods. Here, we develop the first fluorescent probe (Pse631) targeting the 16S rRNA of Pseudonocardia members. In combination with flow cytometry and cell sorting, in situ hybridization with this probe enables sensitive and specific detection of Pseudonocardia cells in mixed cultures and enriched environmental samples without significant false positives, using Escherichia coli, Bacillus subtilis, and Mycobacterium spp. as negative controls. Pseudonocardia dioxanivorans CB1190 cells labeled with Pse631 as a positive control were detected when their relative abundance in the total bacterial community was as low as 0.1%. Effective separation of Pseudonocardia cells from the mixed consortium was confirmed by quantitative PCR analysis of sorted cells. This study provides a culture-independent high-throughput molecular approach enabling effective separation of Pseudonocardia populations from complex microbial communities. This approach will not only facilitate subsequent molecular analyses including species identification and quantification, but also advance understanding of their catabolic capacities and functional molecular diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci 75(10):4801–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr G, Derbyshire ER, Caldera E, Currie CR, Clardy J (2012) Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J of Nat Prod 75(10):1806–1809

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33(Database issue):D294–D296. https://doi.org/10.1093/nar/gki038

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398(6729):701–704

    Article  CAS  Google Scholar 

  • Davenport RJ, Curtis TP, Goodfellow M, Stainsby FM, Bingley M (2000) Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing Actinomycetes and foaming in activated sludge plants. Appl Environ Microbiol 66(3):1158–1166. https://doi.org/10.1128/aem.66.3.1158-1166.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de los Reyes FL, Ritter W, Raskin L (1997) Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Appl Environ Microbiol 63(3):1107–1117

    PubMed  PubMed Central  Google Scholar 

  • Dekker KA, Inagaki T, Gootz TD, Huang LH, Kojima Y, Kohlbrenner WE, Matsunaga Y, McGuirk PR, Nomura E, Sakakibara T, Sakemi S, Suzuki Y, Yamauchi Y, Kojima N (1998) New quinolone compounds from Pseudonocardia sp. with selective and potent anti-Helicobacter pylori activity: taxonomy of producing strain, fermentation, isolation, structural elucidation and biological activities. J Antibiotics 51(2):145–152

    Article  CAS  Google Scholar 

  • Della Lucia TMC, Gandra LC, Guedes RNC (2014) Managing leaf-cutting ants: peculiarities, trends and challenges. Pest Manag Sci 70(1):14–23. https://doi.org/10.1002/ps.3660

    Article  CAS  PubMed  Google Scholar 

  • Dieffenbach CW, Lowe TM, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl 3(3):S30–S37

    Article  CAS  PubMed  Google Scholar 

  • Embley T (1992) The family Pseudonocardiaceae. The Prokaryotes 1:996–1027

    Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170(2):720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grostern A, Alvarez-Cohen L (2013) RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 15(11):3040–3053. https://doi.org/10.1111/1462-2920.12144

    CAS  PubMed  Google Scholar 

  • Hoshino T, Schramm A (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12(9):2508–2517. https://doi.org/10.1111/j.1462-2920.2010.02224.x

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M (2016) 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation 27(4–6):277–286. https://doi.org/10.1007/s10532-016-9772-7

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biot 86(5):1281–1292. https://doi.org/10.1007/s00253-010-2524-4

    Article  CAS  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (2004) Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol 54(3):749–751

    Article  PubMed  Google Scholar 

  • Keller GH, Manak MM (1989) DNA probes. Macmillan Publishers Ltd, London

    Google Scholar 

  • Kelley SL, Aitchison EW, Deshpande M, Schnoor JL, Alvarez PJJ (2001) Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190. Water Res 35(16):3791–3800. https://doi.org/10.1016/S0043-1354(01)00129-4

    Article  CAS  PubMed  Google Scholar 

  • Kim E-J, Jeon J-R, Kim Y-M, Murugesan K, Chang Y-S (2010) Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Appl Microbiol Biot 87(4):1569–1577

    Article  CAS  Google Scholar 

  • Kohlweyer U, Thiemer B, Schräder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol Lett 186(2):301–306

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lee S-B, Strand SE, Stensel HD, Herwig RP (2004) Pseudonocardia chloroethenivorans sp. nov., a chloroethene-degrading actinomycete. Int J Syst Evol Microbiol 54(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Huang H-Y, Zhu W-Y, Lee J-C, Kim C-J, Xu L-H, Zhang L-X, Li W-J (2010a) Pseudonocardia rhizophila sp. nov., a novel actinomycete isolated from a rhizosphere soil. Antonie van Leeuwenhoek 98(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Varma A, Qin S, Xiong Z, Huang H-Y, Zhu W-Y, Zhao L-X, Xu L-H, Zhang S, Li W-J (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLOS ONE 7(12):e51410. https://doi.org/10.1371/journal.pone.0051410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Fiorenza S, Chatham JR, Mahendra S, Alvarez PJ (2010b) 1, 4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Res 44(9):2894–2900

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu Y, He Y, Mathieu J, Hatton J, DiGuiseppi W, Alvarez PJ (2017) Hindrance of 1, 4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. Water Res 112:217–225

    Article  CAS  PubMed  Google Scholar 

  • Li M, Mathieu J, Liu Y, Van Orden ET, Yang Y, Fiorenza S, Alvarez PJ (2013) The abundance of tetrahydrofuran/dioxane monooxygenase genes (thmA/dxmA) and 1, 4-dioxane degradation activity are significantly correlated at various impacted aquifers. Environ Sci Tech Lett 1(1):122–127

    Article  Google Scholar 

  • Llobet-Brossa E, Rosselló-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64(7):2691–2696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M (2008) probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol 10(10):2894–2898. https://doi.org/10.1111/j.1462-2920.2008.01706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598

    Article  CAS  PubMed  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Tech 40(17):5435–5442

    Article  CAS  Google Scholar 

  • Malley LA, Christoph GR, Stadler JC, Hansen JF, Biesemeier JA, Jasti SL (2001) Acute and subchronic neurotoxicological evaluation of tetrahydrofuran by inhalation in rats. Drug Chem Toxicol 24(3):201–219

    Article  CAS  PubMed  Google Scholar 

  • Manti A, Boi P, Amalfitano S, Puddu A, Papa S (2011) Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Meth 87(3):309–315. https://doi.org/10.1016/j.mimet.2011.09.003

    Article  Google Scholar 

  • Mohr T, Stickney J, DiGuiseppi W (2010) Environmental investigation and remediation: 1,4-dioxane and other solvent stabilizers. CRC Press.

  • Morón R, González I, Genilloud O (1999) New genus-specific primers for the PCR identification of members of the genera Pseudonocardia and Saccharopolyspora. Int J Syst Evol Microbiol 49(1):149–162. https://doi.org/10.1099/00207713-49-1-149

    Google Scholar 

  • Mueller UG, Ishak H, Lee JC, Sen R, Gutell RR (2010) Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie van Leeuwenhoek 98(2):195–212. https://doi.org/10.1007/s10482-010-9427-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol 148(1):257–266. https://doi.org/10.1099/00221287-148-1-257

    Article  CAS  Google Scholar 

  • Naiser T, Kayser J, Mai T, Michel W, Ott A (2008) Position dependent mismatch discrimination on DNA microarrays—experiments and model. BMC Bioinformatics 9(1):509. https://doi.org/10.1186/1471-2105-9-509

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Bio 5(6):391–393. https://doi.org/10.1038/nchembio.159

    Article  CAS  Google Scholar 

  • Parales RE, Adamus JE, White N, May HD (1994) Degradation of 1,4-dioxane by an Actinomycete in pure culture. Appl Environ Microbiol 60(12):4527–4530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58(11):2475–2478. https://doi.org/10.1099/ijs.0.65765-0

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70(9):5426–5433. https://doi.org/10.1128/Aem.70.9.5426-5433.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozhitkov A, Noble PA, Domazet-Lošo T, Nolte AW, Sonnenberg R, Staehler P, Beier M, Tautz D (2006) Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res 34(9):e66–e66

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolytica sp. nov. and Pseudonocardia sulfidoxydans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 48(2):441–449

    CAS  Google Scholar 

  • Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH (1994) In-situ probing of Gram-positive bacteria with high DNA G+C content using 235-ribosomal-RNA-targeted oligonucleotides. Microbiol 140:2849–2858

    Article  CAS  Google Scholar 

  • Sales CM, Mahendra S, Grostern A, Parales RE, Goodwin LA, Woyke T, Nolan M, Lapidus A, Chertkov O, Ovchinnikova G, Sczyrba A, Alvarez-Cohen L (2011) Genome sequence of the 1,4-dioxane-degrading Pseudonocardia dioxanivorans strain CB1190. J Bacteriol 193(17):4549–4550. https://doi.org/10.1128/Jb.00415-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppler M, Wagner M, Schon G, Gobel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiol 144(Pt 1):249–259. https://doi.org/10.1099/00221287-144-1-249

    Article  CAS  Google Scholar 

  • Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69(5):2928–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar R, Fuchs BM, Amann R, Pernthaler J (2004) Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 70(10):6210–6219. https://doi.org/10.1128/AEM.70.10.6210-6219.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci 106(42):17,805–17,810. https://doi.org/10.1073/pnas.0904827106

    Article  CAS  Google Scholar 

  • Urzi C, La Cono V, Stackebrandt E (2004) Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH). Environ Microbiol 6(7):678–685. https://doi.org/10.1111/j.1462-2920.2004.00619.x

    Article  CAS  PubMed  Google Scholar 

  • Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl Environ Microbiol 72(8):5218–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS ONE 8(2):e57923. https://doi.org/10.1371/journal.pone.0057923

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Hammes F, De Roy K, Verstraete W, Boon N (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol 28(8):416–424. https://doi.org/10.1016/j.tibtech.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  • Werckenthin C, Gey A, Straubinger RK, Poppert S (2012) Rapid identification of the animal pathogens Streptococcus uberis and Arcanobacterium pyogenes by fluorescence in situ hybridization (FISH). Vet Microbiol 156(3–4):330–335. https://doi.org/10.1016/j.vetmic.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Whittenbury R, Phillips K, Wilkinson J (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiol 61(2):205–218

    CAS  Google Scholar 

  • Wick LM, Rouillard JM, Whittam TS, Gulari E, Tiedje JM, Hashsham SA (2006) On-chip non-equilibrium dissociation curves and dissociation rate constants as methods to assess specificity of oligonucleotide probes. Nucleic Acids Res 34(3):e26–e26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright ES, Yilmaz LS, Corcoran AM, Okten HE, Noguera DR (2014) Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification. Appl Environ Microbiol 80(16):5124–5133. https://doi.org/10.1128/AEM.01685-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz LS, Parnerkar S, Noguera DR (2011) mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 77(3):1118–1122. https://doi.org/10.1128/AEM.01733-10

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Poulsen M, Currie CR (2007) Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. ISME J 1(4):313–320

    Article  PubMed  Google Scholar 

  • Zhao G-Z, Li J, Zhu W-Y, Wei D-Q, Zhang J-L, Xu L-H, Li W-J (2012) Pseudonocardia xishanensis sp. nov., an endophytic actinomycete isolated from the roots of Artemisia annua L. Int J Syst Evol Microbiol 62(10):2395–2399

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6(1). https://doi.org/10.1128/mBio.02288-14

Download references

Acknowledgements

The authors thank Joel M. Sederstrom (Baylor College of Medicine) for the assistance with flow cytometry.

Funding

This study was funded by SERDP (Grant # ER-2301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yang, Y., He, Y. et al. Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Appl Microbiol Biotechnol 102, 3375–3386 (2018). https://doi.org/10.1007/s00253-018-8801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8801-3

Keywords

Navigation