Skip to main content
Log in

Single-cell analysis and isolation for microbiology and biotechnology: methods and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Various single-cell isolation techniques, including dilution, micromanipulation, flow cytometry, microfluidics, and compartmentalization, have been developed. These techniques can be used to cultivate previously uncultured microbes, to assess and monitor cell physiology and function, and to screen for novel microbiological products. Various other techniques, such as viable staining, in situ hybridization, and those using autofluorescence proteins, are frequently combined with these single-cell isolation techniques depending on the purpose of the study. In this review article, we summarize currently available single-cell isolation techniques and their applications, when used in combination with other techniques, in microbiological and biotechnological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Wang J, Furukawa K, Oki K, Uda M, Tsuneda S, Ito Y (2008) A reduction-triggered fluorescence probe for sensing nucleic acids. Bioconjugate Chem 19:1219–1226

    CAS  Google Scholar 

  • Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci 105:18165–18170

    CAS  Google Scholar 

  • Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289

    CAS  Google Scholar 

  • Alain K, Querellou J (2009) Cultivation the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Google Scholar 

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    CAS  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    CAS  Google Scholar 

  • Ashida N, Ishii S, Hayano S, Tago K, Tsuji T, Yoshimura Y, Otsuka S, Senoo K (2010) Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. Appl Microbiol Biotechnol 85:1211–1217

    CAS  Google Scholar 

  • Aurell H, Catala P, Farge P, Wallet F, Le Brun M, Helbig JH, Jarraud S, Lebaron P (2004) Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Appl Environ Microbiol 70:1651–1657

    CAS  Google Scholar 

  • Bakermans C, Madsen EL (2000) Use of substrate responsive-direct viable counts to visualize naphthalene degrading bacteria in a coal tar-contaminated groundwater microbial community. J Microbiol Methods 43:81–90

    CAS  Google Scholar 

  • Bessette PH, Hu X, Soh HT, Daugherty PS (2007) Microfluidic library screening for mapping antibody epitopes. Anal Chem 79:2174–2178

    CAS  Google Scholar 

  • Bergquist PL, Hardiman EM, Ferrari BC, Winsley T (2009) Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 13:389–401

    Google Scholar 

  • Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290

    CAS  Google Scholar 

  • Bershtein S, Tawfik DS (2008) Advances in laboratory evolution of enzymes. Curr Opin Chem Biol 12:151–158

    CAS  Google Scholar 

  • Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2:233–241

    CAS  Google Scholar 

  • Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    CAS  Google Scholar 

  • Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    CAS  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559

    CAS  Google Scholar 

  • Burmølle M, Hansen LH, Oregaard G, Sørensen SJ (2003) Presence of N-Acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45:226–236

    Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    CAS  Google Scholar 

  • Christen R (2008) Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. Microbes Environ 23:253–268

    Google Scholar 

  • Coleman JR, Culley DE, Chrisler WB, Brockman FJ (2007) mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification. J Microbiol Methods 71:246–255

    CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    CAS  Google Scholar 

  • Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212

    CAS  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Mol Biol Rev 60:641–696

    CAS  Google Scholar 

  • Donnelly CW, Baigent GJ (1986) Method for flow cytometric detection of Listeria monocytogenes in milk. Appl Environ Microbiol 52:689–695

    CAS  Google Scholar 

  • Ferrari BC, Gillings MR (2009) Cultivation of fastidious bacteria by viability staining and micromanipulation in a soil substrate membrane system. Appl Environ Microbiol 75:3352–3354

    CAS  Google Scholar 

  • Ferrari BC, Oregaard G, Sørensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microb Ecol 48:239–245

    CAS  Google Scholar 

  • Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720

    CAS  Google Scholar 

  • Ferrari BC, Vesey G, Weir C, Williams KL, Veal DA (1999) Comparison of Cryptosporidium-specific and Giardia-specific monoclonal antibodies for monitoring water samples. Water Res 33:1611–1617

    CAS  Google Scholar 

  • Franzini RM, Kool ET (2009) Efficient nucleic acid detection by templated reductive quencher release. J Am Chem Soc 131:16021–16023

    CAS  Google Scholar 

  • Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    Google Scholar 

  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    CAS  Google Scholar 

  • Fujii Y, Hiraishi A (2009) Combined use of cyanoditolyl tetrazolium staining and flow cytometry for detection of metabolically active bacteria in a fed-batch composting process. Microbes Environ 24:57–63

    Google Scholar 

  • Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826

    CAS  Google Scholar 

  • Haas CN (1989) Estimation of microbial densities from dilution count experiments. Appl Environ Microbiol 44:1934–1942

    Google Scholar 

  • Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Culture-Independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl Environ Microbiol 71:6479–6488

    CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008a) Complete genome of the uncultured Termite Group 1 bacteria in a single host protest cell. Proc Natl Acad Sci USA 105:5555–5560

    CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008b) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109

    CAS  Google Scholar 

  • Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102:15757–15761

    CAS  Google Scholar 

  • Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58

    CAS  Google Scholar 

  • Huber R, Huber H, Stettera KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623

    CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    CAS  Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, Hylckama Vlieg JET, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104:18217–18222

    CAS  Google Scholar 

  • Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken RS (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204

    CAS  Google Scholar 

  • Ishøy T, Kvist T, Westermann P, Ahring BK (2006) An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Appl Microbiol Biotechnol 69:510–514

    Google Scholar 

  • Joux F, Lebaron P (1997) Ecological implications of an improved direct viable count method for aquatic bacteria. Appl Environ Microbiol 63:3643–3647

    CAS  Google Scholar 

  • Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535

    CAS  Google Scholar 

  • Kalyuzhnaya MG, Zabinsky R, Bowerman S, Baker DR, Lidstrom ME, Chistoserdova L (2006) Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl Environ Microbiol 72:4293–4301

    CAS  Google Scholar 

  • Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J 2:696–706

    CAS  Google Scholar 

  • Kamagata Y, Tamaki H (2005) Cultivation of uncultured fastidious microbes. Microbes Environ 20:85–91

    Google Scholar 

  • Kawakami S, Kubota K, Imachi H, Yamaguchi T, Harada H, Ohashi A (2010) Detection of single copy genes by two-pass tyramide signal amplification fluorescence in situ hybridization (Two-Pass TSA-FISH) with single oligonucleotide probes. Microbes Environ 25:15–21. doi:10.1264/jsme2.ME09180

    Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150

    CAS  Google Scholar 

  • Kikuchi Y (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 24:195–204

    Google Scholar 

  • Kogure K, Shimidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420

    Article  CAS  Google Scholar 

  • Kogure K, Shimidu U, Taga N (1984) An improved direct viable count method for aquatic bacteria. Arch Hydrobiol 102:117–122

    Google Scholar 

  • Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106:21478–21483

    CAS  Google Scholar 

  • Kubota K, Ohashi A, Imachi H, Harada H (2006) Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH). J Microbiol Methods 66:521–528

    CAS  Google Scholar 

  • Kvist T, Ahring BK, Lasken RS, Westerman P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–635

    CAS  Google Scholar 

  • Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10:510–516

    CAS  Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    CAS  Google Scholar 

  • Lebaron P, Servais P, Agogue H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782

    CAS  Google Scholar 

  • Li D, He M, Jiang SC (2010) Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. Appl Environ Microbiol 76:1442–1448. doi:10.1128/AEM.01937-09

    Google Scholar 

  • Link AJ, Jeong KJ, Georgiou G (2007) Beyond toothpicks: new methods for isolating mutant bacteria. Nat Rev Microbiol 5:680–688

    CAS  Google Scholar 

  • Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9:2153–2162

    CAS  Google Scholar 

  • Manome A, Zhang H, Tani Y, Katsuragi T, Kurane R, Tsuchida T (2001) Application of gel microdroplet and flow cytometry techniques to selective enrichment of non-growing bacterial cells. FEMS Microbiol Lett 197:29–33

    CAS  Google Scholar 

  • Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL, Beeson KY, Goldberg SMD, Quake SR (2007a) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLOS Genet 3:e155

    Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007b) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:11889–11894

    CAS  Google Scholar 

  • McClelland RG, Pinder AC (1994) Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies. Appl Environ Microbiol 60:4255–4262

    CAS  Google Scholar 

  • Miyauchi R, Oki K, Aoi Y, Tsuneda S (2007) Diversity of nitrite reductase genes in “Candidatus Accumulibacter phosphatis”-dominated cultures enriched by flow-cytometric sorting. Appl Environ Microbiol 73:5331–5337

    CAS  Google Scholar 

  • Moon HS, Nam YW, Park JC, Jung HI (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43:5857–5863

    CAS  Google Scholar 

  • Musovic S, Oregaard G, Kroer N, Sørensen SJ (2006) Cultivation-independent examination of horizontal transfer and host range of an incP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 72:6687–6692

    CAS  Google Scholar 

  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    CAS  Google Scholar 

  • Perlette J, Tan WH (2001) Real-time monitoring of intracellular mRNA hybridization inside single living cells. Anal Chem 73:5544–5550

    CAS  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105:7052–7057

    CAS  Google Scholar 

  • Pianowski Z, Gorska K, Oswald L, Merten CA, Winssinger N (2009) Imaging of mRNA in live cells using nucleic acid-templated reduction of azidorhodamine probes. J Am Chem Soc 131:6492–6497

    CAS  Google Scholar 

  • Podar M, Abulencia CB, Walcher M, Hutchison D, Zengler K, Garcia JA, Holland T, Cotton D, Hauser L, Keller M (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73:3205–3214

    CAS  Google Scholar 

  • Porter J, Edwards C, Morgan JA, Pickup RW (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl Environ Microbiol 59:3327–3333

    CAS  Google Scholar 

  • Pratscher J, Stichternoth C, Fichtl K, Schleifer KH, Braker G (2009) Application of recognition of individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase genes (nirK) of denitrifiers in pure cultures and environmental samples. Appl Environ Microbiol 75:802–810

    CAS  Google Scholar 

  • Privat E, Melvin T, Asseline U, Vigny P (2001) Oligonucleotide-conjugated thiazole orange probes as “light-up” probes for messenger ribonucleic acid molecules in living cells. Photochem Photobiol 74:532–541

    CAS  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1995) A rapid, direct method for enumerating respiring enterohemorrhagic Escherichia coli O157:H7 in water. Appl Environ Microbiol 61:2614–2619

    CAS  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1999) Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl Environ Microbiol 65:1966–1972

    CAS  Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Google Scholar 

  • Rodrigue S, Malmstron RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. Plos One 4:e6864

    Google Scholar 

  • Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M (2009) Candidatus desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015

  • Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons form RNA detection in living cells. Nucleic Acids Res 32:e57

    Google Scholar 

  • Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    Google Scholar 

  • Schut F, Vries EJ DE, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160

    CAS  Google Scholar 

  • Sekar R, Fuchs BM, Amann R, Pernthaler J (2004) Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 70:6210–6219

    CAS  Google Scholar 

  • Shelton DR, Karns JS (2001) Quantitative detection of Escherichia coli O157 in surface waters by using immunomagnetic electrochemiluminescence. Appl Environ Microbiol 67:2908–2915

    CAS  Google Scholar 

  • Silverman AP, Kool ET (2005) Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA. Nucl Acids Res 33:4978–4986

    CAS  Google Scholar 

  • Simu K, Hagström A (2004) Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl Environ Microbiol 70:2445–2451

    CAS  Google Scholar 

  • Sokol DL, Zhang X, Lu P, Gewirtz AM (1998) Real time detection of DNA–RNA hybridization in living cells. Proc Natl Acad Sci USA 95:11538–11543

    CAS  Google Scholar 

  • Southward CM, Surette MG (2002) The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196

    CAS  Google Scholar 

  • Sørensen SJ, Sørensen AH, Hansen LH, Oregaard G, Veal D (2003) Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Curr Microbiol 47:0129–0133

    Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104:9052–9057

    CAS  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    CAS  Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    CAS  Google Scholar 

  • Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6:331–338

    CAS  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93

    Google Scholar 

  • Ullrich S, Karrasch B, Hoppe H, Jeskulke K, Mehrens M (1996) Toxic effects on bacterial metabolism of the redox dye 5-cyano-2, 3-ditolyl tetrazolium chloride. Appl Environ Microbiol 62:4587–4593

    CAS  Google Scholar 

  • Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540

    CAS  Google Scholar 

  • Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011

    CAS  Google Scholar 

  • Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210

    CAS  Google Scholar 

  • Vesey G, Slade JS, Byrne M, Shepherd K, Dennis PJ, Fricker CR (1993) Routine monitoring of Cryptosporidiurn oocysts in water using flow cytometry. J Appl Bacteriol 75:87–90

    CAS  Google Scholar 

  • Wakamoto Y, Inoue I, Moriguchi H, Yasuda K (2001) Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresen J Anal Chem 371:276–281

    CAS  Google Scholar 

  • Walker A, Parkhill J (2008) Single-cell genomics. Nat Rev Microbiol 6:176–177

    CAS  Google Scholar 

  • Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J 3:889–902

    CAS  Google Scholar 

  • Xie C, Chen D, Li YQ (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt Lett 30:1800–1802

    Google Scholar 

  • Yamada T, Sekiguchi Y (2009) Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘Subphylum I’ with natural and biotechnological relevance. Microbes Environ 24:205–216

    Google Scholar 

  • Yamaguchi Y, Arakawa T, Takeda N, Edagawa Y, Shoji S (2009) Development of a poly-dimethylsiloxane microfluidic device for single cell isolation and incubation. Sens Actuators B Chem 136:555–561

    Google Scholar 

  • Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73:712–729

    CAS  Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    CAS  Google Scholar 

  • Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690

    CAS  Google Scholar 

  • Zwirglmaier K, Ludwig W, Schleifer KH (2004) Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization—RING-FISH. Mol Microbiol 51:89–96

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) from Bio-oriented Technology Research Advancement Institution, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, S., Tago, K. & Senoo, K. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biotechnol 86, 1281–1292 (2010). https://doi.org/10.1007/s00253-010-2524-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2524-4

Keywords

Navigation