Skip to main content
Log in

Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The removal of recalcitrant chemicals in wastewater treatment systems is an increasingly relevant issue in industrialized countries. The elimination of persistent xenobiotics such as endocrine-disrupting chemicals (EDCs) emitted by municipal and industrial sewage treatment plants remains an unsolved challenge. The existing efficacious physico-chemical methods, such as advanced oxidation processes, are resource-intensive technologies. In this work, we investigated the possibility to remove phenolic EDCs [i.e., bisphenol A (BPA)] by means of a less energy and chemical consuming technology. To that end, cheap and resistant oxidative enzymes, i.e., laccases, were immobilized onto silica nanoparticles. The resulting nanobiocatalyst produced at kilogram scale was demonstrated to possess a broad substrate spectrum regarding the degradation of recalcitrant pollutants. This nanobiocatalyst was applied in a membrane reactor at technical scale for tertiary wastewater treatment. The system efficiently removed BPA and the results of long-term field tests illustrated the potential of fumed silica nanoparticles/laccase composites for advanced biological wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ammann EM, Gasser CA, Hommes G, Corvini PFX (2013) Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5055-y

    Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539

    Article  CAS  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  PubMed  CAS  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456

    Article  CAS  Google Scholar 

  • Cabana H, Alexandre C, Agathos SN, Jones JP (2009) Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour Technol 100:3447–3458

    Google Scholar 

  • Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90:410–420

    Article  CAS  Google Scholar 

  • Choi KJ, Kim SG, Kim CW, Kim SH (2005) Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A. Chemosphere 58:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • Cirja M, Ivashechkin P, Schäffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7:61–78

    Article  CAS  Google Scholar 

  • Corvini PFX, Shahgaldian P (2010) LANCE: Laccase-nanoparticle conjugates for the elimination of micropollutants (endocrine disrupting chemicals) from wastewater in bioreactors. Rev Environ Sci Biotechnol 9:23–27

    Article  CAS  Google Scholar 

  • Demarche P, Junghanns C, Mazy N, Agathos SN (2012) Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A. New Biotechnol 30:96–103

    Article  CAS  Google Scholar 

  • Durán N, Rosa MA, D'Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzym Microb Technol 31:907–931

    Article  Google Scholar 

  • Eurostat. 2011. Energy price statistics, http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Energy_price_statistics. Accessed August 2011

  • Fukuda T, Uchida H, Suzuki M, Miyamoto H, Morinaga H, Nawata H, Uwajima T (2004) Transformation products of bisphenol A by a recombinant Trametes villosa laccase and their estrogenic activity. J Chem Technol Biotechnol 79:1212–1218

    Google Scholar 

  • Galliker P, Hommes G, Schlosser D, Corvini PFX, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Interface Sci 349:98–105

    Article  PubMed  CAS  Google Scholar 

  • Gander M, Jefferson B, Judd S (2000) Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sep Purif Technol 18:119–130

    Article  CAS  Google Scholar 

  • González S, Petrovic M, Barceló D (2007) Removal of a broad range of surfactants from municipal wastewater — comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67:335–343

    Article  PubMed  CAS  Google Scholar 

  • Greim HA (2004) The endocrine and reproductive system: adverse effects of hormonally active substances? Pediatrics 113:1070–1075

    PubMed  Google Scholar 

  • Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, Völkel W, Wollin KM, Gundert-Remy U (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41:263–291

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hommes G, Gasser CA, Howald CBC, Goers R, Schlosser D, Shahgaldian P, Corvini PFX (2012) Production of a robust nanobiocatalyst for municipal wastewater treatment. Bioresour Technol 115:8–15

    Article  PubMed  CAS  Google Scholar 

  • Hommes G, Gasser CA, Ammann EM, Corvini PFX (2013) Determination of oxidoreductase activity using a high-throughput microplate respiratory measurement. Anal Chem 85:283–291

    Article  PubMed  CAS  Google Scholar 

  • Hu JY, Aizawa T, Ookubo S (2002) Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environ Sci Technol 36:1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Hummel D, Loffler D, Fink G, Ternes TA (2006) Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ Sci Technol 40:7321–7328

    Article  PubMed  CAS  Google Scholar 

  • Korshin GV, Kim J, Gan L (2006) Comparative study of reactions of endocrine disruptors bisphenol A and diethylstilbestrol in electrochemical treatment and chlorination. Water Res 40:1070–1078

    Article  PubMed  CAS  Google Scholar 

  • Kraume M, Drews A (2010) Membrane bioreactors in waste water treatment—status and trends. Chem Eng Technol 33:1251–1259

    Article  CAS  Google Scholar 

  • Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358:112–123

    Article  CAS  Google Scholar 

  • Lee J, Park H, Yoon J (2003) Ozonation characteristics of bisphenol A in water. Environ Technol 24:241–248

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    Article  PubMed  CAS  Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2010a) Degradation of endocrine disrupting bisphenol A during pre-treatment and biotransformation of wastewater sludge. Chem Eng J 163:273–283

    Article  CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2010b) Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge—fate of bisphenol A. Chemosphere 78:923–941

    Article  PubMed  CAS  Google Scholar 

  • Mohidem NA, Mat H (2009) The catalytic activity of laccase immobilized in sol–gel silica. J Appl Sci 9:3141–3145

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  PubMed  CAS  Google Scholar 

  • Ostwald W (1925) Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I. Colloid Polym Sci 36:99–117

    CAS  Google Scholar 

  • Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  PubMed  CAS  Google Scholar 

  • Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ (2009) Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects. J Phys Chem C 113:2521–2525

    Article  CAS  Google Scholar 

  • Rekuć A, Bryjak J, Szymańska K, Jarzębski AB (2009) Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity. Process Biochem 44:191–198

    Article  CAS  Google Scholar 

  • Rosenstiel R, Ort C (2008) Massnahmen in ARA zur weitergehenden Elimination von Mikroverunreinigungen, Kostenstudie, BAFU, Winterthur.

  • Sánchez-Avila J, Bonet J, Velasco G, Lacorte S (2009) Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant. Sci Total Environ 407:4157–4167

    Article  PubMed  CAS  Google Scholar 

  • Singh Arora D, Kumar SR (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biotechnol Biochem 160:1760–1788

    Article  CAS  Google Scholar 

  • Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  PubMed  CAS  Google Scholar 

  • Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res 42:1796–1804

    Article  PubMed  CAS  Google Scholar 

  • Sun SW, Lin YC, Weng YM, Chen MJ (2006) Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compos Anal 19:112–117

    Article  CAS  Google Scholar 

  • Verrecht B, Maere T, Nopens I, Brepols C, Judd S (2010) The cost of a large-scale hollow fibre MBR. Water Res 44:5274–5283

    Article  PubMed  CAS  Google Scholar 

  • Weber Lozada K, Keri RA (2011) Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod 85:490–497

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ying GG, Kookana RS, Kumar A, Mortimer M (2009) Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Sci Total Environ 407:5147–5155

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Feng Y, Gao P, Wang C, Ren N (2011) Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP. J Environ Monit 13:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Kaskel S, Shi J, Wage T, van Pée KH (2007) Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19:6408–6413

    Google Scholar 

  • Zimmermann YS, Shahgaldian P, Corvini PFX, Hommes G (2011) Sorption-assisted surface conjugation: a way to stabilize laccase enzyme. Appl Microbiol Biotechnol 92:169–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank AB Enzymes for the supply of genus Thielavia laccase . Furthermore, the support of the Commission for Technology and Innovation of the Swiss Federal Office for Professional Education and Technology (Grant PFNM-NM 9632.1, Project LANCE) and the European Commission within the 7th Framework Program under grant agreement 265946 (Project Minotaurus) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe F.-X. Corvini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, C.A., Yu, L., Svojitka, J. et al. Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale. Appl Microbiol Biotechnol 98, 3305–3316 (2014). https://doi.org/10.1007/s00253-013-5414-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5414-8

Keywords

Navigation