Skip to main content

Perspectives on the Feasibility of Using Enzymes for Pharmaceutical Removal in Wastewater

  • Chapter
  • First Online:
Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 108))

Abstract

This particular chapter spotlights the growing environmental concerns and hazardous consequences of numerous organic contaminants so-called emerging contaminants (ECs). These ECs are being detected, though in different quantities, in different environmental matrices and wastewater treatment systems. With ever-increasing awareness, people are now more concerned about the wide-spread distribution of pharmaceutically related active compounds in water matrices. In turn, the free flow of ECs in water matrices poses notable adverse effects on human, aquatic animals, and naturally occurring plants, even at very small concentrations. Due to inadequacies and ineffectiveness of, in practice, physical and chemical-based remediation processes, robust treatment approaches, such as microorganisms and their novel enzyme-based degradation/removal of ECs, are of supreme interest. This chapter focuses on various pharmaceutically related ECs and their efficient mitigation from water matrices. Following a brief introduction, the focus is given to two main treatment approaches, i.e., (1) remediation of pharmaceutically active compounds by crude (pristine) and purified enzymes (i.e., lignin peroxidase, manganese peroxidase, soybean peroxidase, horseradish peroxidase, and laccases) and (2) immobilized enzyme-assisted degradation of pharmaceutically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pylypchuk IV, Daniel G, Kessler VG, Seisenbaeva GA (2020) Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic Sol–Gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nano 10(2):282

    CAS  Google Scholar 

  2. Ali N, Khan A, Bilal M, Malik S, Badshah S, Iqbal H (2020) Chitosan-based bio-composite modified with Thiocarbamate moiety for decontamination of cations from the aqueous media. Molecules 25(1):226

    CAS  Google Scholar 

  3. Ali N, Said A, Ali F, Raziq F, Ali Z, Bilal M et al (2020) Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut 231(2):50

    CAS  Google Scholar 

  4. Ebele AJ, Abdallah MAE, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16

    Google Scholar 

  5. Khan A, Ali N, Bilal M, Malik S, Badshah S, Iqbal H (2019) Engineering functionalized chitosan-based sorbent material: characterization and sorption of toxic elements. Appl Sci 9(23):5138

    CAS  Google Scholar 

  6. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal Chem 22(10):685–696

    Google Scholar 

  7. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37(6):1061–1068

    CAS  Google Scholar 

  8. Aldekoa J, Medici C, Osorio V, Pérez S, Marcé R, Barceló D, Francés F (2013) Modelling the emerging pollutant diclofenac with the GREAT-ER model: application to the Llobregat River basin. J Hazard Mater 263:207–213

    CAS  Google Scholar 

  9. Buser HR, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32(22):3449–3456

    CAS  Google Scholar 

  10. Hallgren P, Wallberg P (2015) Background report on pharmaceutical concentrations and effects in the Baltic Sea. In: Policy area hazards of the EU strategy for the Baltic Sea Region. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  11. Belhaj D, Baccar R, Jaabiri I, Bouzid J, Kallel M, Ayadi H, Zhou JL (2015) Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). Sci Total Environ 505:154–160

    CAS  Google Scholar 

  12. Morsi R, Bilal M, Iqbal HMN, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ:136572

    Google Scholar 

  13. Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353

    CAS  Google Scholar 

  14. Bilal M, Jing Z, Zhao Y, Iqbal HM (2019) Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal Agric Biotechnol 19:101174

    Google Scholar 

  15. Bilal M, Ashraf SS, Barceló D, Iqbal HM (2019) Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci Total Environ 691:1190–1211

    CAS  Google Scholar 

  16. Bilal M, Rasheed T, Iqbal HMN, Yan Y (2018) Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Sci Total Environ 644:1–13

    CAS  Google Scholar 

  17. Glumoff T, Harvey P, Molinari S, Goble M, Frank G, Palmer JM et al (1990) Lignin peroxidase from Phanerochaete chrysosporium molecular and kinetic characterization of isozymes. Eur J Biochem 187:515–520

    CAS  Google Scholar 

  18. Furukawa T, Bello FO, Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol 9:448–471

    CAS  Google Scholar 

  19. Wen X, Jia Y, Li J (2009) Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium–a white rot fungus. Chemosphere 75(8):1003–1007

    CAS  Google Scholar 

  20. Zhang Y, Geißen SU (2010) In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase. J Hazard Mater 176(1–3):1089–1092

    CAS  Google Scholar 

  21. Ivancich A, Mazza G, Desbois A (2001) Comparative electron paramagnetic resonance study of radical intermediates in turnip peroxidase isozymes. Biochemistry 40:6860–6866

    CAS  Google Scholar 

  22. Zhang Y, Geißen SU (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227

    CAS  Google Scholar 

  23. Heinfling A, Ruiz-Dueñas FJ, Martı́nez MJ, Bergbauer M, Szewzyk U, Martı́nez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428(3):141–146

    CAS  Google Scholar 

  24. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341

    CAS  Google Scholar 

  25. Paszczyński A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29(1–2):37–41

    Google Scholar 

  26. Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HM (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci Total Environ 576:646–659

    CAS  Google Scholar 

  27. Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D et al (2014) Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PLoS One 9(4):e95557

    Google Scholar 

  28. Champagne PP, Ramsay JA (2005) Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Appl Microbiol Biotechnol 69(3):276

    CAS  Google Scholar 

  29. Maciel MJM, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13(6):14–15

    Google Scholar 

  30. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269(52):32759–32767

    CAS  Google Scholar 

  31. Hildén K, Mäkelä MR, Steffen KT, Hofrichter M, Hatakka A, Archer DB, Lundell TK (2014) Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol 72:131–136

    Google Scholar 

  32. Li L, Liu B, Yang J, Zhang Q, He C, Jia R (2019) Catalytic properties of a short manganese peroxidase from Irpex lacteus F17 and the role of Glu166 in the Mn2+-independent activity. Int J Biol Macromol 136:859–869

    CAS  Google Scholar 

  33. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    CAS  Google Scholar 

  34. Lueangjaroenkit P, Teerapatsakul C, Sakka K, Sakka M, Kimura T, Kunitake E, Chitradon L (2019) Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system. Mycobiology 47:217–229

    Google Scholar 

  35. Wen X, Jia Y, Li J (2010) Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J Hazard Mater 177(1–3):924–928

    CAS  Google Scholar 

  36. Bódalo A, Gomez JL, Gomez E, Bastida J, Maximo MF (2006) Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere 63(4):626–632

    Google Scholar 

  37. Fernandes M, Souza DH, Henriques RO, Alves MV, Skoronski E, Junior AF (2020) Obtaining soybean peroxidase from soybean hulls and its application for detoxification of 2, 4-dichlorophenol contaminated water. J Environ Chem Eng 8:103786

    CAS  Google Scholar 

  38. Alneyadi A, Shah I, AbuQamar S, Ashraf S (2017) Differential degradation and detoxification of an aromatic pollutant by two different peroxidases. Biomol Ther 7(1):31

    Google Scholar 

  39. Alneyadi AH, Ashraf SS (2016) Differential enzymatic degradation of thiazole pollutants by two different peroxidases–a comparative study. Chem Eng J 303:529–538

    CAS  Google Scholar 

  40. Almaqdi KA, Morsi R, Alhayuti B, Alharthi F, Ashraf SS (2019) LC-MSMS based screening of emerging pollutant degradation by different peroxidases. BMC Biotechnol 19(1):83

    CAS  Google Scholar 

  41. Arnoldsson K, Andersson PL, Haglund P (2012) Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization. Environ Sci Technol 46(13):7239–7244

    CAS  Google Scholar 

  42. Baumer JD, Valério A, de Souza SMGU, Erzinger GS, Furigo Jr A, de Souza AAU (2018) Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. J Hazard Mater 360:82–88

    Google Scholar 

  43. Zhou H, Yang D, Qiu X, Wu X, Li Y (2013) A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H2O2 incubation. Appl Microbiol Biotechnol 97(24):10309–10320

    CAS  Google Scholar 

  44. Colosi LM, Pinto RA, Huang Q, Weber WJJ (2009) Peroxidase-mediated degradation of perfluorooctanoic acid. Environ Toxicol Chem Int J 28(2):264–271

    CAS  Google Scholar 

  45. Ling KQ, Li WS, Sayre LM (2008) Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation. J Am Chem Soc 130(3):933–944

    CAS  Google Scholar 

  46. Yang L, Shi Y, Li J, Fang L, Luan T (2018) Transformation of aqueous sulfonamides under horseradish peroxidase and characterization of sulfur dioxide extrusion products from sulfadiazine. Chemosphere 200:164–172

    CAS  Google Scholar 

  47. Xu R, Si Y, Li F, Zhang B (2015) Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes. Environ Sci Pollut Res 22(5):3838–3846

    CAS  Google Scholar 

  48. Berry TD, Filley TR, Blanchette RA (2014) Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. Environ Pollut 193:197–204

    CAS  Google Scholar 

  49. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385

    CAS  Google Scholar 

  50. Asgher M, Noreen S, Bilal M (2017) Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chem Eng Res Des 119:1–11

    CAS  Google Scholar 

  51. Asgher M, Noreen S, Bilal M (2017) Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. Int J Biol Macromol 95:54–62

    CAS  Google Scholar 

  52. Moreno AD, Ibarra D, Eugenio ME, Tomás-Pejó E (2019) Laccases as versatile enzymes: from industrial uses to novel applications. J Chem Technol Biotechnol 95:481. https://doi.org/10.1002/jctb.6224

    Article  CAS  Google Scholar 

  53. Unuofin JO, Okoh AI, Nwodo UU (2019) Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules (Basel, Switzerland) 24(11):2064

    CAS  Google Scholar 

  54. Guardado ALP, Belleville MP, Alanis MDJR, Saldivar RP, Sanchez-Marcano J (2019) Effect of redox mediators in pharmaceuticals degradation by laccase: a comparative study. Process Biochem 78:123–131

    Google Scholar 

  55. Litwińska K, Bischoff F, Matthes F, Bode R, Rutten T, Kunze G (2019) Characterization of recombinant laccase from Trametes versicolor synthesized by Arxula adeninivorans and its application in the degradation of pharmaceuticals. AMB Express 9(1):102

    Google Scholar 

  56. Alharbi SK, Nghiem LD, Van De Merwe JP, Leusch FD, Asif MB, Hai FI, Price WE (2019) Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: transformation products and toxicity of treated effluent. Biocatal Biotransformation 37(6):399–408

    CAS  Google Scholar 

  57. Sutar RS, Rathod VK (2015) Ultrasound assisted laccase catalyzed degradation of ciprofloxacin hydrochloride. J Ind Eng Chem 31:276–282

    CAS  Google Scholar 

  58. Sutar RS, Rathod VK (2015) Ultrasound assisted enzyme catalyzed degradation of cetirizine dihydrochloride. Ultrason Sonochem 24:80–86

    CAS  Google Scholar 

  59. Suda T, Hata T, Kawai S, Okamura H, Nishida T (2012) Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresour Technol 103(1):498–501

    CAS  Google Scholar 

  60. Llorca M, Rodríguez-Mozaz S, Couillerot O, Panigoni K, de Gunzburg J, Bayer S et al (2015) Identification of new transformation products during enzymatic treatment of tetracycline and erythromycin antibiotics at laboratory scale by an on-line turbulent flow liquid-chromatography coupled to a high resolution mass spectrometer LTQ-Orbitrap. Chemosphere 119:90–98

    CAS  Google Scholar 

  61. Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2(1):31–40

    Google Scholar 

  62. Yang RL, Zhao XJ, Wu TT, Bilal M, Wang ZY, Luo HZ, Yang WJ (2019) A novel and highly regioselective biocatalytic approach to acetylation of helicid by using whole-cell biocatalysts in organic solvents. Catal Commun 128:105707

    CAS  Google Scholar 

  63. Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym 101:56–66

    CAS  Google Scholar 

  64. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interf Sci 258:1–20

    CAS  Google Scholar 

  65. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235

    CAS  Google Scholar 

  66. Ren S, Li C, Jiao X, Jia S, Jiang Y, Bilal M, Cui J (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J 373:1254–1278

    CAS  Google Scholar 

  67. Bilal M, Asgher M (2015) Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnol 15(1):111

    Google Scholar 

  68. Touahar IE, Haroune L, Ba S, Bellenger JP, Cabana H (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99

    CAS  Google Scholar 

  69. García-Zamora JL, León-Aguirre K, Quiroz-Morales R, Parra-Saldívar R, Gómez-Patiño MB, Arrieta-Baez D et al (2018) Chloroperoxidase-mediated halogenation of selected pharmaceutical micropollutants. Catalysts 8(1):32

    Google Scholar 

  70. Guo J, Liu X, Zhang X, Wu J, Chai C, Ma D et al (2019) Immobilized lignin peroxidase on Fe3O4@ SiO2@ polydopamine nanoparticles for degradation of organic pollutants. Int J Biol Macromol 138:433–440

    CAS  Google Scholar 

  71. Inoue S, Igarashi Y, Yoneda Y, Kawai S, Okamura H, Nishida T (2015) Elimination and detoxification of fungicide miconazole and antidepressant sertraline by manganese peroxidase-dependent lipid peroxidation system. Int Biodeterior Biodegradation 100:79–84

    CAS  Google Scholar 

  72. Forrez I, Carballa M, Verbeken K, Vanhaecke L, Ternes T, Boon N, Verstraete W (2010) Diclofenac oxidation by biogenic manganese oxides. Environ Sci Technol 44(9):3449–3454

    CAS  Google Scholar 

  73. Yang J, Lin Y, Yang X, Ng TB, Ye X, Lin J (2017) Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J Hazard Mater 322:525–531

    CAS  Google Scholar 

  74. Wen X, Zeng Z, Du C, Huang D, Zeng G, Xiao R et al (2019) Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 222:865–871

    CAS  Google Scholar 

  75. Jahangiri E, Thomas I, Schulze A, Seiwert B, Cabana H, Schlosser D (2018) Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci Total Environ 624:309–322

    CAS  Google Scholar 

  76. Ba S, Haroune L, Soumano L, Bellenger JP, Jones JP, Cabana H (2018) A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere 201:749–755

    CAS  Google Scholar 

  77. Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Surampalli RY (2017) Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605:315–321

    Google Scholar 

  78. Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY (2017) Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Sci Total Environ 584:393–401

    Google Scholar 

  79. Ji C, Hou J, Wang K, Zhang Y, Chen V (2016) Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. J Membr Sci 502:11–20

    CAS  Google Scholar 

  80. Kumar VV, Cabana H (2016) Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals. Bioresour Technol 200:81–89

    CAS  Google Scholar 

  81. Nguyen LN, Hai FI, Price WE, Leusch FD, Roddick F, McAdam EJ et al (2014) Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. Int Biodeterior Biodegradation 95:25–32

    CAS  Google Scholar 

  82. Wang Q, Cui J, Li G, Zhang J, Huang F, Wei Q (2014) Laccase immobilization by chelated metal ion coordination chemistry. Polymers 6(9):2357–2370

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to their representative universities/institutes for providing literature facilities.

Conflict of Interests

Authors declare no conflict of interest in any capacity, including financial and competing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilal, M., Iqbal, H.M.N., Barceló, D. (2020). Perspectives on the Feasibility of Using Enzymes for Pharmaceutical Removal in Wastewater. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_661

Download citation

Publish with us

Policies and ethics