Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 17, pp 7543–7552 | Cite as

Progress in bioleaching: part B: applications of microbial processes by the minerals industries

  • Corale L. Brierley
  • James A. Brierley
Mini-Review

Abstract

This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249–257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation–reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation–heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.

Keywords

Bioleaching Biooxidation Sulfide minerals Applications Reactors Microorganisms 

References

  1. Acar S, Brierley JA, Wan RY (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometallurgy 77:239–246CrossRefGoogle Scholar
  2. Andersen KJ, Lundgren DG (1969) Enzymatic studies of the iron-oxidizing bacterium Ferrobacillus ferrooxidans: evidence for a glycolytic pathway and Krebs cycle. Can J Microbiol 15:73–79PubMedCrossRefGoogle Scholar
  3. Batty JD, Rorke GV (2005) Development and commercial demonstration of the BioCOP™ thermophile process. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings. 16th International Biohydrometallurgy Symposium, Compress, South Africa, pp 153-161Google Scholar
  4. BIOX® (2012) The BIOX® brochure 2012.Gold Fields, South Africa. http://www.goldfieldsbioxonline.co.za/biox/overview.html. Accessed 19 April 2013
  5. Brierley JA (2003) Response of microbial systems to thermal stress in biooxidation–heap pretreatment of refractory gold ores. Hydrometallurgy 71:13–19CrossRefGoogle Scholar
  6. Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7CrossRefGoogle Scholar
  7. Brierley JA, Kuhn MC (2010) Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy 104:410–413CrossRefGoogle Scholar
  8. Brierley JA, Luinstra L (1993) Biooxidation–heap concept for pretreatment of refractory gold ore. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies, vol. I bioleaching processes. The Minerals, Metals & Materials Society (TMS), Warrendale, pp 437–448Google Scholar
  9. Brierley JA, Wan RY, Hill DL, Logan TC (1995) Biooxidation–heap pretreatment technology for processing lower grade refractory gold ores. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processes, vol I. University of Chile, Santiago, pp 253–262Google Scholar
  10. Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845PubMedCrossRefGoogle Scholar
  11. Coram-Uliana NJ, van Hille RP, Kohr WJ, Harrison STL (2006) Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy 83:237–244CrossRefGoogle Scholar
  12. Demergasso C, Galleguillos F, Soto P, Serón M, Iturriaga V (2010) Microbial succession during a heap bioleaching cycle of low grade copper sulfides. Does this knowledge mean a real input for industrial process design and control? Hydrometallurgy 104:382–390CrossRefGoogle Scholar
  13. Dew D W, Rautenbach GF, van Hille RP, Davis-Belmar CS, Harvey IJ, Truelove JS (2011) High temperature heap leaching of chalcopyrite: method of evaluation and process model validation. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 201-219Google Scholar
  14. du Plessis CA, Stabbert W, Hallberg KB, Johnson DB (2011) Ferrodox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109:221–229CrossRefGoogle Scholar
  15. Gericke M (2011) Review on the role of microbiology in the design and operation of heap bioleaching processes. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 165-181Google Scholar
  16. Gericke M, Neale JW, van Staden PJ (2009) A Mintek perspective of the past 25 years in minerals bioleaching. J South African Institute of Mining and Metallurgy 109:567–574Google Scholar
  17. Gericke M, Govender Y, Pinches A (2010) Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 104:414–419CrossRefGoogle Scholar
  18. Halinen A-K, Rahunen N, Määttä K, Kaksonen AH, Riekkola-Vanhanen MR, Puhakka J (2007) Microbial community of the Talvivaara demonstration-scale bioheap. In: Schippers A, Sand W, Glombitza F, Willscher S (eds) Biohydrometallurgy: from the single cell to the environment. Trans Tech Publications, Switzerland, p 579Google Scholar
  19. Hallberg KB, Grail BM, du Plessis CA, Johnson DB (2011) Reductive dissolution of ferric iron minerals: a new approach for bio-processing. Min Eng 24:620–624CrossRefGoogle Scholar
  20. Lee J, Acar S, Doerr DL, Brierley JA (2011) Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 105:213–221CrossRefGoogle Scholar
  21. Logan TC, Seal T, Brierley JA (2007) Whole-ore heap biooxidation of sulfidic gold-bearing ores. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 113–138CrossRefGoogle Scholar
  22. Moore P (2010) Biomining beckons. Min Mag 201:36–39Google Scholar
  23. Morin DHR (2007) Bioleaching of sulfide minerals in continuous stirred tanks. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Houten, pp 133–150CrossRefGoogle Scholar
  24. Morin DHR, d'Hugues P (2007) Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 35–55CrossRefGoogle Scholar
  25. Mutch L, Watling HR, Watkin ELJ (2010) Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns. Hydrometallurgy 104:391–398CrossRefGoogle Scholar
  26. Norris PR (2007) Acidophile diversity in mineral sulfide oxidation. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 199–216CrossRefGoogle Scholar
  27. Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943PubMedCrossRefGoogle Scholar
  28. Olson GJ, Clark TR (2008) Bioleaching of molybdenite. Hydrometallurgy 93:10–15CrossRefGoogle Scholar
  29. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257PubMedCrossRefGoogle Scholar
  30. Petersen J (2010) Modelling of bioleach processes: connection between science and engineering. Hydrometallurgy 104:404–409CrossRefGoogle Scholar
  31. Plumb JJ, Haddad CM, Gibson AE, Franzmann PD (2007a) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a sulfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423PubMedCrossRefGoogle Scholar
  32. Plumb JJ, Hawkes RB, Franzmann PD (2007b) The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 217–235CrossRefGoogle Scholar
  33. Pradhan N, Hathsarma KC, SrinivasaRao K, Sulka LB, Mishra BK (2008) Heap bioleaching of chalcopyrite: a review. Min Eng 21:355–365CrossRefGoogle Scholar
  34. Puhakka JA, Kaksonen AH, Reikkola-Vanhanen M (2007) Heap leaching of black schist. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 139–151CrossRefGoogle Scholar
  35. Razzell WE, Trussell PC (1963) Isolation and properties of an iron-oxidizing Thiobacillus. J Bacteriol 85:595–603PubMedGoogle Scholar
  36. Riekkola-Vanhanen M (2007) Talvivarra black schist bioheap leachnig demonstration plant. In: Schippers A, Sand W, Glombitza F, Willscher S (eds) Biohydrometallurgy: from the single cell to the environment. Trans Tech, Dürnten, pp 30–37Google Scholar
  37. Ruan R, Liu X, Zou G, Chen J, Wen J, Wang D (2011) Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy 108:130–135CrossRefGoogle Scholar
  38. Saari P, Riekkola-Vanhanen M (2011) Talvivaara bio-heap leaching process. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 53-65Google Scholar
  39. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Houten, pp 3–33CrossRefGoogle Scholar
  40. Shutey-McCann MI, Sawyer F-P, Logan T, Schindler AJ, Perry RM (1997) Operation of Newmont's biooxidation demonstration facility. In: Hausen DM (ed) Global exploitation of heap leachable gold deposits. The Minerals, Metals and Materials Society, Warrendale, pp 75–82Google Scholar
  41. Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168PubMedGoogle Scholar
  42. Tempel K (2003) Commercial biooxidation challenges at Newmont's Nevada operations. In: 2003 SME Annual Meeting, Preprint 03-067, Soc Mining, Metallurgy and Exploration, LittletonGoogle Scholar
  43. Tupikina OV, Ngoma IE, Minnaar S, Harrison STL (2011) Some aspects of the effect of pH and acid stress in heap bioleaching. Min Eng 24:1209–1214CrossRefGoogle Scholar
  44. van Aswegen PC, Godfrey MW, Miller DM, Haines AK (1991) Developments and innovations in bacterial oxidation of refractory ores. Min Metall Proc 8:168191Google Scholar
  45. van Hille RP, van Wyk N, Harrison STL (2011) Review of the microbial ecology of BIOX® reactors illustrate the dominance of the genus Ferroplasma in many commercial reactors. In: Qiu G, Jiang T, Qin W, Liu X, Yang Y, Wang H (eds) Biohydrometallurgy: biotech key to unlock minerals resources value. Central South University Press, Changsha, p 1021Google Scholar
  46. van Niekerk J (2009) Recent advances in the BIOX® technology. In: Donati ER, Viera MR, Tavani EL, Giaveno MA, Lavalle TL, Chiacchiarini PA (eds) Biohydrometallurgy: A meeting point between microbial ecology, metal recovery processes and environmental remediation. Trans Tech, Dürnten, pp 465–468Google Scholar
  47. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Part A. Appl Microbiol Biotechnol. doi: 10.1007/s00253-013-4954-2
  48. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108CrossRefGoogle Scholar
  49. Watling H (2011) Adaptability of biomining organisms in hydrometallurgical processes. In: Sobral LGS, de Oliveira DM, de Sousza CEG (eds) Biohydrometallurgical processes: A practical approach. Centre for Mineral Technology and Ministry of Science, Technology and Innovation, Rio de Janeiro, pp 41–70Google Scholar
  50. Watling HR, Perrot EA, Shiers DW (2008) Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy 93:57–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Brierley Consultancy LLCHighlands RanchUSA

Personalised recommendations