Skip to main content
Log in

Progress in bioleaching: part B: applications of microbial processes by the minerals industries

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249–257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation–reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation–heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar S, Brierley JA, Wan RY (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometallurgy 77:239–246

    Article  CAS  Google Scholar 

  • Andersen KJ, Lundgren DG (1969) Enzymatic studies of the iron-oxidizing bacterium Ferrobacillus ferrooxidans: evidence for a glycolytic pathway and Krebs cycle. Can J Microbiol 15:73–79

    Article  PubMed  CAS  Google Scholar 

  • Batty JD, Rorke GV (2005) Development and commercial demonstration of the BioCOP™ thermophile process. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings. 16th International Biohydrometallurgy Symposium, Compress, South Africa, pp 153-161

  • BIOX® (2012) The BIOX® brochure 2012.Gold Fields, South Africa. http://www.goldfieldsbioxonline.co.za/biox/overview.html. Accessed 19 April 2013

  • Brierley JA (2003) Response of microbial systems to thermal stress in biooxidation–heap pretreatment of refractory gold ores. Hydrometallurgy 71:13–19

    Article  CAS  Google Scholar 

  • Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7

    Article  CAS  Google Scholar 

  • Brierley JA, Kuhn MC (2010) Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy 104:410–413

    Article  CAS  Google Scholar 

  • Brierley JA, Luinstra L (1993) Biooxidation–heap concept for pretreatment of refractory gold ore. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies, vol. I bioleaching processes. The Minerals, Metals & Materials Society (TMS), Warrendale, pp 437–448

    Google Scholar 

  • Brierley JA, Wan RY, Hill DL, Logan TC (1995) Biooxidation–heap pretreatment technology for processing lower grade refractory gold ores. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processes, vol I. University of Chile, Santiago, pp 253–262

    Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845

    Article  PubMed  CAS  Google Scholar 

  • Coram-Uliana NJ, van Hille RP, Kohr WJ, Harrison STL (2006) Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy 83:237–244

    Article  CAS  Google Scholar 

  • Demergasso C, Galleguillos F, Soto P, Serón M, Iturriaga V (2010) Microbial succession during a heap bioleaching cycle of low grade copper sulfides. Does this knowledge mean a real input for industrial process design and control? Hydrometallurgy 104:382–390

    Article  CAS  Google Scholar 

  • Dew D W, Rautenbach GF, van Hille RP, Davis-Belmar CS, Harvey IJ, Truelove JS (2011) High temperature heap leaching of chalcopyrite: method of evaluation and process model validation. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 201-219

  • du Plessis CA, Stabbert W, Hallberg KB, Johnson DB (2011) Ferrodox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109:221–229

    Article  Google Scholar 

  • Gericke M (2011) Review on the role of microbiology in the design and operation of heap bioleaching processes. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 165-181

  • Gericke M, Neale JW, van Staden PJ (2009) A Mintek perspective of the past 25 years in minerals bioleaching. J South African Institute of Mining and Metallurgy 109:567–574

    CAS  Google Scholar 

  • Gericke M, Govender Y, Pinches A (2010) Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 104:414–419

    Article  CAS  Google Scholar 

  • Halinen A-K, Rahunen N, Määttä K, Kaksonen AH, Riekkola-Vanhanen MR, Puhakka J (2007) Microbial community of the Talvivaara demonstration-scale bioheap. In: Schippers A, Sand W, Glombitza F, Willscher S (eds) Biohydrometallurgy: from the single cell to the environment. Trans Tech Publications, Switzerland, p 579

    Google Scholar 

  • Hallberg KB, Grail BM, du Plessis CA, Johnson DB (2011) Reductive dissolution of ferric iron minerals: a new approach for bio-processing. Min Eng 24:620–624

    Article  CAS  Google Scholar 

  • Lee J, Acar S, Doerr DL, Brierley JA (2011) Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 105:213–221

    Article  CAS  Google Scholar 

  • Logan TC, Seal T, Brierley JA (2007) Whole-ore heap biooxidation of sulfidic gold-bearing ores. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 113–138

    Chapter  Google Scholar 

  • Moore P (2010) Biomining beckons. Min Mag 201:36–39

    Google Scholar 

  • Morin DHR (2007) Bioleaching of sulfide minerals in continuous stirred tanks. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Houten, pp 133–150

    Chapter  Google Scholar 

  • Morin DHR, d'Hugues P (2007) Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 35–55

    Chapter  Google Scholar 

  • Mutch L, Watling HR, Watkin ELJ (2010) Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns. Hydrometallurgy 104:391–398

    Article  CAS  Google Scholar 

  • Norris PR (2007) Acidophile diversity in mineral sulfide oxidation. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 199–216

    Chapter  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Article  PubMed  CAS  Google Scholar 

  • Olson GJ, Clark TR (2008) Bioleaching of molybdenite. Hydrometallurgy 93:10–15

    Article  CAS  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  PubMed  CAS  Google Scholar 

  • Petersen J (2010) Modelling of bioleach processes: connection between science and engineering. Hydrometallurgy 104:404–409

    Article  CAS  Google Scholar 

  • Plumb JJ, Haddad CM, Gibson AE, Franzmann PD (2007a) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a sulfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    Article  PubMed  Google Scholar 

  • Plumb JJ, Hawkes RB, Franzmann PD (2007b) The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 217–235

    Chapter  Google Scholar 

  • Pradhan N, Hathsarma KC, SrinivasaRao K, Sulka LB, Mishra BK (2008) Heap bioleaching of chalcopyrite: a review. Min Eng 21:355–365

    Article  CAS  Google Scholar 

  • Puhakka JA, Kaksonen AH, Reikkola-Vanhanen M (2007) Heap leaching of black schist. In: Rawlings DE, Johnson B (eds) Biomining. Springer, Heidelberg, pp 139–151

    Chapter  Google Scholar 

  • Razzell WE, Trussell PC (1963) Isolation and properties of an iron-oxidizing Thiobacillus. J Bacteriol 85:595–603

    PubMed  CAS  Google Scholar 

  • Riekkola-Vanhanen M (2007) Talvivarra black schist bioheap leachnig demonstration plant. In: Schippers A, Sand W, Glombitza F, Willscher S (eds) Biohydrometallurgy: from the single cell to the environment. Trans Tech, Dürnten, pp 30–37

    Google Scholar 

  • Ruan R, Liu X, Zou G, Chen J, Wen J, Wang D (2011) Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy 108:130–135

    Article  CAS  Google Scholar 

  • Saari P, Riekkola-Vanhanen M (2011) Talvivaara bio-heap leaching process. In: Percolation leaching: the status globally and in southern Africa. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 53-65

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Houten, pp 3–33

    Chapter  Google Scholar 

  • Shutey-McCann MI, Sawyer F-P, Logan T, Schindler AJ, Perry RM (1997) Operation of Newmont's biooxidation demonstration facility. In: Hausen DM (ed) Global exploitation of heap leachable gold deposits. The Minerals, Metals and Materials Society, Warrendale, pp 75–82

    Google Scholar 

  • Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168

    PubMed  CAS  Google Scholar 

  • Tempel K (2003) Commercial biooxidation challenges at Newmont's Nevada operations. In: 2003 SME Annual Meeting, Preprint 03-067, Soc Mining, Metallurgy and Exploration, Littleton

  • Tupikina OV, Ngoma IE, Minnaar S, Harrison STL (2011) Some aspects of the effect of pH and acid stress in heap bioleaching. Min Eng 24:1209–1214

    Article  CAS  Google Scholar 

  • van Aswegen PC, Godfrey MW, Miller DM, Haines AK (1991) Developments and innovations in bacterial oxidation of refractory ores. Min Metall Proc 8:168191

    Google Scholar 

  • van Hille RP, van Wyk N, Harrison STL (2011) Review of the microbial ecology of BIOX® reactors illustrate the dominance of the genus Ferroplasma in many commercial reactors. In: Qiu G, Jiang T, Qin W, Liu X, Yang Y, Wang H (eds) Biohydrometallurgy: biotech key to unlock minerals resources value. Central South University Press, Changsha, p 1021

    Google Scholar 

  • van Niekerk J (2009) Recent advances in the BIOX® technology. In: Donati ER, Viera MR, Tavani EL, Giaveno MA, Lavalle TL, Chiacchiarini PA (eds) Biohydrometallurgy: A meeting point between microbial ecology, metal recovery processes and environmental remediation. Trans Tech, Dürnten, pp 465–468

    Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Part A. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4954-2

  • Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Watling H (2011) Adaptability of biomining organisms in hydrometallurgical processes. In: Sobral LGS, de Oliveira DM, de Sousza CEG (eds) Biohydrometallurgical processes: A practical approach. Centre for Mineral Technology and Ministry of Science, Technology and Innovation, Rio de Janeiro, pp 41–70

    Google Scholar 

  • Watling HR, Perrot EA, Shiers DW (2008) Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy 93:57–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Brierley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brierley, C.L., Brierley, J.A. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97, 7543–7552 (2013). https://doi.org/10.1007/s00253-013-5095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5095-3

Keywords

Navigation