Skip to main content

The Microbiology of Moderately Thermophilic and Transiently Thermophilic Ore Heaps

  • Chapter
Biomining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243.

    Article  CAS  PubMed  Google Scholar 

  • Beck JV (1967) The role of bacteria in copper mining operations. Biotechnol Bioeng 9:487–497.

    Article  CAS  Google Scholar 

  • Brierley CL (1999) Bacterial succession in bioheap leaching. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. International biohydrometallurgy symposium. Elsevier, Amsterdam, pp 91–97.

    Chapter  Google Scholar 

  • Brierley JA, Hill D (1993) Biooxidation process for recovery of gold from heaps of low-grade sulfidic and carbonaceous sulfidic ore materials. US Patent 5, 246, 486.

    Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates in South African commercial biooxidation tanks that operate at 40?C. Appl Environ Microbiol 68:838–845.

    Article  CAS  PubMed  Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL (1997) The BIOXâ„¢ process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 46–80.

    Google Scholar 

  • Dixon DG (2000) Analysis of heat conservation during copper sulfide heap leaching. Hydrometallurgy 58:27–41.

    Article  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterisation of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088.

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Haddad CM, Hawkes RB, Robertson WJ, Plumb JJ (2005) Effects of temperature on the rates of iron and sulphur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Miner Eng 18:1304–1314.

    Article  CAS  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilising, thermacidophilic Archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566.

    Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham W, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidising, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006.

    CAS  PubMed  Google Scholar 

  • Gómez E, Blázquez ML, Ballester A, González F (1996) Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria. Miner Eng 9:985–999.

    Article  Google Scholar 

  • Hawkes RB, Franzmann PD, O’Hara G, Plumb JJ Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. In press.

    Google Scholar 

  • Hawkes RB, Franzmann PD, Plumb JJ (2005) Moderate thermophiles including Ferroplasma cyprexacervatum sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium, pp 657–666.

    Google Scholar 

  • Keeling SE, Palmer M-L, Caracatsanis FC, Johnson JA, Watling HR (2005) Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Miner Eng 18:1289–1296.

    Article  CAS  Google Scholar 

  • Leahy MJ, Davidson MR, Schwarz MP (2005) A model for heap bioleaching of chalcocite with heat balance: bacterial temperature dependence. Miner Eng 18:1239–1252.

    Article  CAS  Google Scholar 

  • Marsh RM, Norris PR (1983) The isolation of some thermophilic, autotrophic, iron- and sulfur-oxidising bacteria. FEMS Microbiol Lett 17:311–315.

    Article  Google Scholar 

  • Norris PR (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 3–27.

    Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterisation of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943.

    Article  CAS  PubMed  Google Scholar 

  • Pantelis G, Ritchie AIM (1993) Optimising oxidation rates in heaps of pyritic material. In: Torma E, Wey JE, Lackshmanan, (eds) Biohydrometallurgy technologies, bioleaching processes, vol 1. The Minerals, Metals and Materials Society, Warrendale, pp 731–738.

    Google Scholar 

  • Plumb JJ, Gibbs B, Stott MB, Robertson WJ, Gibson JAE, Nichols PD, Watling HR, Franzmann PD (2002) Enrichment and characterization of thermophilic acidophiles for the bioleaching of mineral sulfides. Miner Eng 15:787–794.

    Article  CAS  Google Scholar 

  • Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5.

    CAS  PubMed  Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler R.E (1983) Model of bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226.

    CAS  PubMed  Google Scholar 

  • Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233:351–362.

    Article  CAS  PubMed  Google Scholar 

  • Readett D, Sylwestrzak L, Franzmann PD, Plumb JJ, Robertson WR, Gibson JAE, Watling H (2003) The life cycle of a chalcocite heap bioleach system. In: Young CA, Alfantazi AM, Anderson CG, Dreisinger DB, Harris B, James A (eds) Hydrometallurgy 2003–5th international conference in honour of Professor Ian Ritchie, vol 1. Leaching and solution purification. The Minerals, Metals and Materials Society, Warrendale, pp 365–374.

    Google Scholar 

  • Ream BP, Schlitt WJ (1997) Kennecott’s Bingham Canyon heap leach program, part 1: the test heap and SX-EW pilot plant. paper presented at ALTA 1997, copper hydrometallurgy forum, Brisbane.

    Google Scholar 

  • Ritchie AIM (1997) Optimization of biooxidation heaps. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 201–226.

    Google Scholar 

  • Schnell HA (1997) Bioleaching of copper. In: Rawlings DE (ed) Biomining. Springer, Berlin Heidelberg New York, pp 21–43.

    Google Scholar 

  • Shutey-McCann ML, Sawyer FP, Logan T, Schindler AJ, Perry RM (1997) Operation of Newmont’s biooxidation demonstration facility. In: Hausen DM (ed) Global exploitation of heap leachable gold deposits. The Minerals, Metals and Materials Society, Warrendale, pp 75–82.

    Google Scholar 

  • Stott MB, Sutton DC, Watling HR, Franzmann PD (2003) Comparative leaching of chalcopyrite by selected acidophilic Bacteria and Archaea. Geomicrobiol J 20:215–230.

    Article  CAS  Google Scholar 

  • Tempel K (2003) Commercial biooxidation challenges at Newmont’s Nevada operations. In: 2003 SME annual meeting, preprint 03–067, Society of Mining, Metallurgy and Exploration, Littleton.

    Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43.

    Article  CAS  PubMed  Google Scholar 

  • Virtue P, Nichols PD, Boon PI (1996) Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. J Microbiol Methods 25:177–185.

    Article  CAS  Google Scholar 

  • Zwietering MH, de Koos JT, Hasenack BE, de Wit JC, van’t Riet K (1991) Modelling of bacterial growth as a function of temperature. Appl Environ Microbiol 57:1094–1101.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plumb, J.J., Hawkes, R.B., Franzmann, P.D. (2007). The Microbiology of Moderately Thermophilic and Transiently Thermophilic Ore Heaps. In: Rawlings, D.E., Johnson, D.B. (eds) Biomining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34911-2_11

Download citation

Publish with us

Policies and ethics