Skip to main content

Advertisement

Log in

Microbial communities in large-scale wood piles and their effects on wood quality and the environment

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The demand of renewable energy sources, i.e. biomass, is steadily increasing worldwide to reduce the need of fossil energy sources. Biomass such as energy crops, woody species, forestry and agricultural residues are the most common renewable energy sources. Due to uneven demand for wood fuel, the material is mostly stored outdoors in chip piles or as logs until utilisation. Storage of biomass is accompanied by chemical, physical and biological processes which can significantly reduce the fuel quality. However, heating plants require high-quality biomass to ensure efficient operation, thereby minimising maintenance costs. Therefore, optimised storage conditions and duration times for chipped wood and tree logs have to be found. This paper aims at reviewing available knowledge on the pathways of microbial effects on stored woody biomass and on investigations of the fungal and bacterial community structure and identity. Moreover, potential functions of microorganisms present in wood chip piles and logs are discussed in terms of (1) reduction of fuel quality, (2) catalysing self-ignition processes, and (3) constituting health risk and unfriendly work environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JD, Frostick LE (2009) Analysis of bacterial activity, biomass and diversity during windrow composting. Waste Manag 29:598–605

    Article  CAS  Google Scholar 

  • Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Anerud E, Jirjis R (2011) Fuel quality of Norway spruce stumps-influence of harvesting technique and storage method. Scand J For Res 26:257–266

    Article  Google Scholar 

  • Arantes V, Milagres AMF (2007) The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fungi for degradation of Azure B. Enzyme Microb Technol 42:17–22

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF, Filley TR, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555

    Article  CAS  Google Scholar 

  • Baker AJ (1983) Wood fuel properties and fuel products from woods. Michigan State Univ, East Lansing, pp 14–25, Proc. Fuel wood Management and Utilization Seminar, Nov. 9–11, 1982

    Google Scholar 

  • Bedane AH, Afzal MT, Sokhansanj S (2011) Simulation of temperature and moisture changes during storage of woody biomass owing to weather variability. Biomass Bioenergy 35:3147–3151

    Article  Google Scholar 

  • Berens S, Kaspari H, Klemme JH (1996) Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie Van Leeuwenhoek 69:235–241

    Article  CAS  Google Scholar 

  • Bergman Ö, Nilsson T (1974) Studies on wood deterioration in outside storage of a commercial pine chip pile. Royal college of forestry, Dept of Forest Products. Stockholm. Research Notes nr. 93

  • Bevivino A, Tabacchioni S, Chiarini L, Carusi MV, Del Gallo M, Visca P (1994) Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140:1069–1077

    Article  CAS  Google Scholar 

  • Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecological Bulletins 49:43–56

    Google Scholar 

  • Brand MA, Bolzon de Muniz GI, Quirino WF, Brito JO (2011) Storage as a tool to improve wood fuel quality. Biomass Bioenergy 35:2581–2588

    Article  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Ann Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Busse MD (1994) Downed bole-wood decomposition in lodgepole pine forests of central Oregon. Soil Sci Soc America J 58:221–227

    Article  Google Scholar 

  • Callaham D, Del Tredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    Article  CAS  Google Scholar 

  • Caroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Casal MD, Gil MV, Pevida C, Rubiera F, Pis JJ (2010) Influence of storage time on the quality and combustion behaviour of pine woodchips. Energy 35:3066–3071

    Article  Google Scholar 

  • Chen MY, Tsay SS, Chen KY, Shi YC, Lin YT, Lin GH (2002) Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155–2161

    Article  CAS  Google Scholar 

  • Clausen CA (1996) Bacterial associations with decaying wood: a review. Int Biodet Biodeg 37:101–107

    Article  Google Scholar 

  • Conrad R, Klose M, Noll M (2009) Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 11:1844–1853

    Article  CAS  Google Scholar 

  • Cowling EB, Merrill W (1966) Nitrogen in wood and its role in wood deterioration. Can J Bot 44:1539–1554

    Article  CAS  Google Scholar 

  • Daniel G (2003) Microview of wood under degradation by bacteria and fungi. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation, American Chemical Society Symposium Series. American Chemical Society, Washington DC, pp 34–72, Chapter 4

    Chapter  Google Scholar 

  • De Boer W, van der Wal A (2008) Interactions between saprotrophic basidiomycetes and bacteria. In: Boddy L, Frankland JC, van West P (eds.) Ecology of Saprotrophic Basidiomycetes. British Mycological Society Series, Volume 28, 143–153

  • de Boer W, Folman LB, Summberbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  Google Scholar 

  • Divya KC, Ostergaard J (2009) Battery energy storage technology for power systems—an overview. Electr Power Syst Res 79:511–520

    Article  Google Scholar 

  • DOE (2007) Roadmap for bioenergy and biobased products in the United States. Department of Energy, Washington DC

    Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  Google Scholar 

  • Durant AJ, Le Quéré C, Hope C, Friend AD (2011) Economic value of improved quantification in global sources and sinks of carbon dioxide. Phil Trans R Soc A 369:1967–1979. doi:10.1098/rsta.2011.0002

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  Google Scholar 

  • Ernstson ML, Jirjis R, Rasmuson A (1991) Experimental determination of the degradation rate for some forest residue fuel components at different temperatures and oxygen concentrations. Scand J For Res 6:271–287

    Article  Google Scholar 

  • Evans AM, Finkral AJ (2009) From renewable energy to fire risk reduction: a synthesis of biomass harvesting and utilization case studies in US forests. GCB Bioenergy 1:211–219

    Article  Google Scholar 

  • Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. de Gruyter, Berlin

    Google Scholar 

  • Fermor R, Wood DA (1981) Degradation of bacteria by Agaricus bisporus and other fungi. J General Microbiology 126:377–387

    Google Scholar 

  • Ferrero F, Lohrer C, Schmidt BM, Noll M, Malow M (2009) A mathematical model to predict the heating-up of large-scale wood piles. J Loss Prev Process Ind 22:439–448

    Article  CAS  Google Scholar 

  • Ferrero F, Malow M, Noll M (2011) Temperature and gas evolution during large scale outside storage of wood chips. Eur J Wood Wood Prod 69:587–595

    Article  CAS  Google Scholar 

  • Filbakk T, Hoibo OA, Dibdiakova J, Nurmi J (2011) Modelling moisture content and dry matter loss during storage of logging residues for energy. Scand J For Res 26:267–277

    Article  Google Scholar 

  • Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20:151–159

    Article  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  Google Scholar 

  • Fridkin SK, Jarvis WR (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9:499–511

    CAS  Google Scholar 

  • Furumiya J, Nishimura H, Nakanishi A, Hashimoto Y (2011) Postmortem endogenous ethanol production and diffusion from the lung due to aspiration of wood chip dust in the work place. Legal Med 13:210–212

    Article  CAS  Google Scholar 

  • Granhall U, Lindberg T (1978) Nitrogen fixation in some coniferous forest ecosystems. Ecological Bulletins 26:178–192

    Google Scholar 

  • Greaves H (1971) The bacterial factor in wood decay. Wood Sci Technol 5:6–16

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Ann Rev Ecol Sys 33:1–23

    Article  Google Scholar 

  • Hansgate AM, Schloss PD, Hay AG, Walker LP (2005) Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiol Ecol 51:209–214

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lgnin degradation. FEMS Microbiol Rev 13:45–125

    Article  Google Scholar 

  • Hendrickson OQ (1991) Abundance and activity of N2-fixing bacteria in decayed wood. Can J For Res 21:1299–1304

    Article  Google Scholar 

  • Hicks WT, Harmon ME, Griffiths RP (2003) Abiotic controls on nitrogen fixation and respiration in selected woody debris from the Pacific Northwest, USA. Ecoscience 10:66–73

    Google Scholar 

  • Holtz C, Kaspari H, Klemme JH (1991) Production and properties of xylanases from thermophilic actinomycetes. Antonie Van Leeuwenhoek 59:1–7

    Article  CAS  Google Scholar 

  • IEA. (2011) International Energy Agency, World Energy Statistics, October 2011. OECD/IEA, Paris, France. http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf

  • Jakobs-Schönwandt D, Mathies H, Abraham WR, Pritzkow W, Stephan I, Noll M (2010) Biodegradation of a biocide (Cu-N-cyclohexyldiazenium dioxide) component of a wood preservative by a defined soil bacterial community. Appl Environ Microbiol 76:8076–8083

    Article  CAS  Google Scholar 

  • Janda JM, Abbott SL (1998) Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions. Clin Infec Dis 27:332–344

    Article  CAS  Google Scholar 

  • Jirjis R (1989) Enumeration and distribution of fungi in stored fuel chip piles. Material und Organismen 24:27–38

    Google Scholar 

  • Jirjis R (1995b) Storage and drying of wood fuel. Biomass Bioenergy 9:181–190

    Article  Google Scholar 

  • Jirjis, R (1995c) Control of fuel quality during storage. Proceedings of IEA/BA Task IX workshop ”Preparation and supply of high quality wood fuels”. Garpenberg, Sweden. Mattson JE, Mitchell P, Tordmar K (ed) Department of Operational Efficiency, SLU. Research Notes No. 278

  • Jirjis R (2005) Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 28:193–201

    Article  Google Scholar 

  • Jirjis, R, Lehtikangas, P (1991) Storage of forest residue in covered windrows. Proceedings of the Workshop “International Energy Agreement/BA, Activity 4 & 5”, Silsoe Research Institute, England, June 1991. Suadicani, K. (ed), The Danish Forest and landscape Research Institute, Denmark. Research Report No. 10, p. 46-53

  • Jirjis, R, Norden, B (2005) Quality and working environment aspects during handling and storage of composite residue logs. Swedish University of Agricultural Sciences, Deptartment of Bioenergy, Report No. 7. ISSN 1651-0720

  • Jurgensen MF, Larsen MJ, Wolosiewicz M, Harvey AE (1989) A comparison of dinitrogen fixation rates in wood litter decayed by white-rot fungi and brown-rot fungi. Plant Soil 115:117–122

    Article  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  Google Scholar 

  • Kenney WA, Sennerby-Forsse L, Layton P (1990) A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 21:163–188

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Klass DL (1988) Biomass for renewable energy, fuels and chemicals. Academic, San Diego

    Google Scholar 

  • Kolb S (2009) Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 300:1–10

    Article  CAS  Google Scholar 

  • Kollman F (1951) Technologie des Holzes und der Holzwerkstoffe I. Springer, Heidelberg

    Google Scholar 

  • Kubler H (1987) Heat generation processes as cause of spontaneous ignition in forest products. Forest Products Abstracts 10:299–322

    Google Scholar 

  • Kuehne C, Donath C, Müller-Using SI, Bartsch N (2008) Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Can J For Res 38:2405–2413

    Article  CAS  Google Scholar 

  • Kulháková A, Béguiristain T, Moukoumi J, Berthelin J, Ranger J (2006) Spatial and temporal diversity of wood decomposer communities in different forest stands, determined by ITS rDNA targeted TGGE. Ann Forest Sci 63:547–556

    Article  CAS  Google Scholar 

  • Kulichevskaya IS, Kostina LA, Valaskova V, Rijpstra IC, Sinninghe Damste JS, de Boer W, Dedysh SN (2011) Acidicapsa borealis gen. nov., sp. nov. and A. ligni sp. nov., two novel subdivision 1 Acidobacteria from sphagnum peat and decaying wood. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.034819-0, in press

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  Google Scholar 

  • Lindner DL, Vasaitis R, Kubartová A, Allmér J, Johannesson H, Banik MT, Stenlid J (2011) Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6yr after inoculation. Fung Ecol 4:449–460

    Article  Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Lyons GJ, Lunny F, Pollock HP (1985) A procedure for estimating the value of forest fuels. Biomass 8:283–300

    Article  CAS  Google Scholar 

  • Määttä J, Lehto M, Leino M, Tillander S, Haapakoski R, Majuri ML, Wolff H, Rautio S, Welling I, Husgafvel-Pursiainen K, Savolainen K, Alenius H (2006) Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust. Toxicol Sci 93:96–104

    Article  CAS  Google Scholar 

  • Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of the monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169. doi:10.1023/A:102402271036

    Article  CAS  Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutírrez A, Del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Martínez-Murcia AJ, Saavedra MJ, Mota VR, Maier T, Stackebrandt E, Cousin S (2008) Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int J Syst Evol Microbiol 58:1169–1175

    Article  CAS  Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–522. doi:10.1126/science.190.4214.515

    Google Scholar 

  • McCormick A, Loeffler J, Ebel F (2010) Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol 12:1535–1543

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (1995) A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use Manag 11:110–114

    Article  Google Scholar 

  • Mechichi T, Stackebrandt E, Gad'on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35

    Article  CAS  Google Scholar 

  • Nati C, Spinelli R, Fabbri P (2010) Wood chips size distribution in relation to blade wear and screen use. Biomass Bioenergy 34:583–587

    Article  Google Scholar 

  • Nilsson T (1965) Mikroorganismer I flisstackar. Svensk Papperstidning 68(15):495–499

    Google Scholar 

  • Nitsch J (2008) Strategy to increase the use of renewable energies. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Stuttgart

    Google Scholar 

  • Noll M, Klose M, Conrad R (2010a) Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol Ecol 73:215–225

    Article  CAS  Google Scholar 

  • Noll M, Naumann A, Ferrero F, Malow M (2010b) Exothermic processes in industrial-scale piles of chipped pine-wood are linked to shifts in gamma-, alphaproteobacterial and fungal ascomycete communities. Int Biodeterior Biodeg 64:629–637

    Article  CAS  Google Scholar 

  • Novinscak A, Decoste NJ, Surette C, Filion M (2009) Characterization of bacterial and fungal communities in composted biosolids over a 2 year period using denaturing gradient gel electrophoresis. Can J Microbiol 55:375–387

    Article  CAS  Google Scholar 

  • Olsson J, Jonsson BG, Hjältén J, Ericson L (2011) Addition of coarse woody debris—the early fungal succession on Picea abies logs in managed forests and reserves. Biolog Conserv 144:1100–1110

    Article  Google Scholar 

  • Pankratov TA, Tindall BJ, Liesack W, Dedysh SN (2007) Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354

    Article  CAS  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620

    Article  Google Scholar 

  • Purohit P, Tripathi AK, Kandpal TC (2006) Energetics of coal substitution by briquettes of agricultural residues. Energy 31:1321–1331

    Article  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Pennanen T, Mäkipää R (2010a) Relationship between wood-inhabiting fungi determined by molecular analysis (denaturing gradient gel electrophoresis) and quality of decaying logs. Can J For Res 40:2384–2397

    Article  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Hantula J, Mäkipää R, Pennanen T (2010b) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fung Ecol 4:437–448

    Article  Google Scholar 

  • Reichenbach H, Lang E, Schumann P, Spröer C (2006) Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: Rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. Int J Syst Evol Microbiol 56:2357–2363

    Article  CAS  Google Scholar 

  • Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236–301

    Article  CAS  Google Scholar 

  • Richardson M, Lass-Flörl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14:5–24

    Article  Google Scholar 

  • Röser D, Mola-Yudego B, Sikanen L, Prinz R, Gritten D, Emer B, Väätäinen K, Erkkilä A (2011) Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass Bioenergy 35:4238–4247

    Article  Google Scholar 

  • Schellenberger S, Kolb S, Drake HL (2010) Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. Environ Microbiol 12:845–861

    Article  CAS  Google Scholar 

  • Schmalenberger A, Pritzkow W, Ojeda JJ, Noll M (2011) Characterization of main sulfur source of wood-degrading basidiomycetes by SK-edge X-ray absorption near edge spectroscopy (XANES). Int Biodeterior Biodegrad 65:1215–1223

    Article  CAS  Google Scholar 

  • Scholz V, Idler C, Daries W, Egert J (2005) Schimmelpilzentwicklung und Verluste bei der Lagerung von Holzhackschnitzeln. Holz Roh Werkstoff 63:449–455

    Article  Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57

    Article  Google Scholar 

  • Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170

    Article  Google Scholar 

  • Sebastian A, Madsen AM, Martensson L, Pomorska D, Larsson L (2006) Assessment of microbial exposure risks from handling of biofuel wood chips and straw—effect of outdoor storage. Ann Agric Environ Med 13:139–145

    Google Scholar 

  • Sharp RF (1975) Nitrogen fixation in deteriorating wood: the incorporation of 15N2 and the effect of environmental conditions on acetylene reduction. Soil Biol Biochem 7:9–14

    Article  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mtualists? Fung Biol Rev 21:75–89

    Article  Google Scholar 

  • Silvester WB (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America. Soil Biol Biochem 21:283–289

    Article  CAS  Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106

    Article  CAS  Google Scholar 

  • Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decay in old-growth Douglas-fir forests. Can J For Res 17:1585–1595

    Article  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580

    CAS  Google Scholar 

  • Spano SD, Jurgensen MF, Larsen MJ, Harvey AE (1982) Nitrogen-fixing bacteria in Douglas-fir residue decayed by Fomitopsis pinicola. Plant Soil 68:117–123

    Article  Google Scholar 

  • Spinelli R, Ivorra L, Magagnotti N, Picchi G (2011) Performance of a mobile mechanical screen to improve the commercial quality of wood chips for energy. Bioresour Technol 102:7366–7370

    Article  CAS  Google Scholar 

  • Springer EL, Hajny GJ (1970) Spontaneous heating in oiled wood chips. I Initial mechanism Tappi 53:85–86

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Struis RPWJ, Ludwig C, Barrelet T, Krahenbuhl U, Rennenberg H (2008) Studying sulfur functional groups in Norway spruce year rings using SL-edge total electron yield spectroscopy. Sci Total Environ 403:196–206

    Article  CAS  Google Scholar 

  • Susott RA, Degroot WF, Shafizadwh F (1975) Heat content of natural fuels. J Fire Flammability 6:311–324

    Google Scholar 

  • Tame NW, Dlugogorski BZ, Kennedy EM (2007) Formation of dioxins and furans during combustion of treated wood. Prog Energy Combust Sci 33:384–408

    Article  CAS  Google Scholar 

  • Thörnqvist T, Jirjis R (1990) Changes in fuel chips during storage in large piles. Swedish University of Agricultural Sciences, Department of Forest Products, Uppsala. Report no. 219. ISSN 0348-4599, ISRN SLU-VKL-R-219-SE

  • Tillman DA (1978) Wood as an energy resource. Academic, New York

    Google Scholar 

  • Tlalka M, Fricker M, Watkinson S (2008) Imaging of long-distance α-aminoisobutyric acid translocation dynamics during resource capture by Serpula lacrymans. Appl Environ Microbiol 74:2700–2708

    Article  CAS  Google Scholar 

  • Tuomela M, Hatakka A, Raiskila S, Vikman M, Itavaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:492–499

    Article  CAS  Google Scholar 

  • Untereiner WA, Malloch D (1999) Patterns of substrate utilization in species of Capronia and allied black yeasts: ecological and taxonomic implications. Mycologia 91:417–427

    Article  CAS  Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Progress 6:201–212

    Article  Google Scholar 

  • Urakami T, Araki H, Komagata K (1995) Characteristics of newly isolated Xanthobacter strains and fatty acid compositions and quinone systems in yellow-pigmented hydrogen-oxidizing bacteria. Int J Syst Bacteriol 45:863–867

    Article  CAS  Google Scholar 

  • Valaskova V, de Boer W, Gunnewiek PJ, Pospisek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221

    Article  CAS  Google Scholar 

  • Viana H, Cohen WB, Lopes D, Aranha J (2010) Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl Energy 87:2551–2560

    Article  Google Scholar 

  • Voro'ev AV, de Boer W, Folman LB, Bodelier PLE, Doronina NV, Suzina NE, Trotsenko YA, Dedysh SN (2009) Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59:2538–2545

    Article  CAS  Google Scholar 

  • Wang X, Padgett JM, De La Cruz FB, Barlaz MA (2011) Wood biodegradation in laboratory-scale landfills. Environ Sci Technol 45:6864–6871

    CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  Google Scholar 

  • Weißhaupt P, Pritzkow W, Noll M (2011) Nitrogen metabolism of wood decomposing basidiomycetes and their interaction with diazotrophs as revealed by IRMS. Int J Mass Spectrom 307:225–231

    Article  CAS  Google Scholar 

  • Weißhaupt P, Pritzkow W, Noll M (2012) Nitrogen sources of Oligoporus placenta and Trametes versicolor evaluated in a 23 experimental plan. Fung Biol 116:81–89

    Article  CAS  Google Scholar 

  • Weon HY, Kwon SW, Son JA, Kim SJ, Kim YS, Kim BY, Ka JO (2010) Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:2424–2429

    Article  CAS  Google Scholar 

  • White RH (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Science 19:446–452

    CAS  Google Scholar 

  • Wintermeyer SF, Kuschner WG, Wong H, D'Alessandro A, Blanc PD (1997) Pulmonary responses after wood chip mulch exposure. J Occup Environ Med 39:308–314

    Article  CAS  Google Scholar 

  • Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57

    Article  CAS  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564–7569

    Article  CAS  Google Scholar 

  • Zamorano M, Popov V, Rodríguez ML, García-Maraver A (2011) A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renew Energy 36:3133–3140

    Article  Google Scholar 

  • Zhang HB, Yang MX, Tu R (2008) Unexpectedly high bacterial diversity in decaying wood of a conifer as revealed by a molecular method. Int Biodeterior Biodegrad 62:471–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Noll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noll, M., Jirjis, R. Microbial communities in large-scale wood piles and their effects on wood quality and the environment. Appl Microbiol Biotechnol 95, 551–563 (2012). https://doi.org/10.1007/s00253-012-4164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4164-3

Keywords

Navigation