Skip to main content
Log in

Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gluconobacter oxydans is an industrially important bacterium that lacks a complete Embden–Meyerhof pathway (glycolysis). The organism instead uses the pentose phosphate pathway to oxidize sugars and their phosphorylated intermediates. However, the lack of glycolysis limits the amount of NADH as electron donor for electron transport phosphorylation. It has been suggested that the pentose phosphate pathway contributes to NADH production. Six enzymes predicted to play central roles in intracellular glucose and gluconate flux were heterologously overproduced in Escherichia coli and characterized to investigate the intracellular flow of glucose and gluconates into the pentose phosphate pathway and to explore the contribution of the pentose phosphate pathway to NADH generation. The key pentose phosphate enzymes glucose 6-phosphate dehydrogenase (Gox0145) and 6-phosphogluconate dehydrogenase (Gox1705) had dual cofactor specificities but were physiologically NADP- and NAD-dependent, respectively. Putative glucose dehydrogenase (Gox2015) was NADP-dependent and exhibited a preference for mannose over glucose, whereas a 2-ketogluconate reductase (Gox0417) displayed dual cofactor specificity for NAD(P)H. Furthermore, a putative gluconokinase and a putative glucokinase were identified. The gluconokinase displayed high activities with gluconate and is thought to shuttle intracellular gluconate into the pentose phosphate pathway. A model for the trafficking of glucose and gluconates into the pentose phosphate pathway and its role in NADH generation is presented. The role of NADPH in chemiosmotic energy conservation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi O, Matsushita K, Shinagawa E, Ameyama M (1980) Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 44:155–164

    CAS  Google Scholar 

  • Adachi O, Osada K, Matsushita K, Shinagawa E, Ameyama M (1982) Purification, crystallization and properties of 6-phospho-D-gluconate dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 46:391–398

    CAS  Google Scholar 

  • Alvarez B, Martínez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41:918–924

    Article  CAS  Google Scholar 

  • Attwood MM, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72:101–105

    Article  CAS  Google Scholar 

  • Ausubel FM (2002) Preparation and analysis of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (eds) Current protocols in molecular biology, vol 5. Wiley, New York, pp 2–11

    Google Scholar 

  • Avigad G, Alroy Y, Englard S (1968) Purification and properties of nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogenase from Gluconobacter cerinus. J Biol Chem 243:1936–1941

    CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • De Ley J, Kersters K (1964) Oxidation of alphatic glycols by acetic acid bacteria. Bacteriol Rev 28:164–180

    Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, MD, pp 267–278

    Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  Google Scholar 

  • Hiller J, Franco-Lara E, Weuster-Botz D (2007) Metabolic profiling of Escherichia coli cultivations: evaluation of extraction and metabolite analysis procedures. Biotechnol Lett 29:1169–1178

    Article  CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs): coenzyme-based functional assignments in completed genomes. Eur J Biochem 269:4409–4417

    Article  CAS  Google Scholar 

  • Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177:2637–2643

    CAS  Google Scholar 

  • Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans: improvement of growth rate and growth yield from glucose by elimination of gluconate formation. Appl Environ Microbiol. doi:10.1128/AEM.03022-09

    Google Scholar 

  • Kulhanek M (1989) Microbial dehydrogenations of monosaccharides. Adv Appl Microbiol 34:141–182

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Luna MF, Bernardelli CE, Galar ML, Boiardi JL (2006) Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL3. Curr Microbiol 52:163–168

    Article  CAS  Google Scholar 

  • Mott JE, Grant RA, Ho YS, Platt T (1985) Maximizing gene expression from plasmid vectors containing the lambda PL promoter: strategies for overproducing transcription termination factor rho. Proc Natl Acad Sci USA 82:88–92

    Article  CAS  Google Scholar 

  • Okamoto K (1963) Enzymatic studies on the formation of 5-ketogluconic acid by Acetobacter suboxydans. J Biochem 53:348–353

    CAS  Google Scholar 

  • Olijve W (1978) Glucose metabolism in Gluconobacter oxydans; Dissertation, University of Groningen

  • Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose-containing media. Arch Microbiol 121:283–290

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk A, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  • Ragunathan S, Levy HR (1994) Purification and characterization of the NAD-preferring glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum). Arch Biochem Biophys 310:360–366

    Article  CAS  Google Scholar 

  • Saichana I, Ano Y, Adachi O, Matsushita K, Toyama H (2007) Preparation of enzymes required for enzymatic quantificaiton of 5-keto-D-gluconate and 2-keto-D-gluconate. Biosci Biotechnol Biochem 71:2478–2486

    Article  CAS  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  Google Scholar 

  • Schweiger P, Deppenmeier U (2010) Analysis of aldehyde reductases from Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 85:1025–1031

    Article  CAS  Google Scholar 

  • Schweiger P, Gross H, Deppenmeier U (2010) Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-2607-2

    Google Scholar 

  • Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135

    Article  CAS  Google Scholar 

  • Tonouchi N, Sugiyama M, Yokozeki K (2003) Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Biosci Biotechnol Biochem 67:2648–2651

    Article  CAS  Google Scholar 

  • Weenk G, Olijve W, Harder W (1984) Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol 20:400–405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by funds from Bundesministerium für Bildungund Forschung (BMBF, project no. 0315632A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, B., Pahlke, J., Schweiger, P. et al. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans . Appl Microbiol Biotechnol 88, 711–718 (2010). https://doi.org/10.1007/s00253-010-2779-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2779-9

Keywords

Navigation