Skip to main content
Log in

Analysis of aldehyde reductases from Gluconobacter oxydans 621H

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two cytosolic nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductases, Gox1899 and Gox2253, from Gluconobacter oxydans 621H were overproduced and purified from Escherichia coli. The purified proteins exhibited subunit masses of 26.4 (Gox1899) and 36.7 kDa (Gox2253). Both proteins formed homo-octamers exhibiting native masses of 210 and 280 kDa, respectively. The substrate spectra, optimal reaction conditions, and kinetic constants were determined for Gox1899 and Gox2253. Both enzymes efficiently catalyzed the reduction of medium/long-chain aldehydes. However, Gox1899 had a wider substrate spectrum and was more catalytically efficient. The best activity with Gox1899 was found for aliphatic aldehydes of C6-C10. In contrast, Gox2253 had a limited substrate spectrum and reduced octanal, nonanal, and decanal. Both enzymes were unable to oxidize primary alcohols. Aldehyde removal may be of particular importance for Gluconobacter because the membrane-bound alcohol dehydrogenase rapidly oxidizes short to long-chain alcohols, and large quantities of aldehydes could enter the cell, making detoxification necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42:2045–2205

    CAS  Google Scholar 

  • Adams CW, Fornwald JA, Schmidt FJ, Rosenberg M, Brawneri ME (1988) Gene organization and structure of the Streptomyces lividans gal operon. J Bacteriol 170:203–212

    CAS  Google Scholar 

  • Ausubel FM (2002) Preparation and analysis of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (eds) Current protocols in molecular biology, vol 5. Wiley, New York, pp 2–11

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen J, Schenker S, Frosto TA, Henderson GI (1998) Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta 1380:336–344

    CAS  Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, MD, pp 267–278

    Google Scholar 

  • DeMaster EG, Shirota FN, Nagasawa HT (1986) Role of propiolaldehyde and other metabolites in the pargyline inhibition of rat-liver aldehyde dehydrogenase. Biochem Pharmacol 35:1481–1489

    Article  CAS  Google Scholar 

  • Esterbauer H, Zollner H, Scholz N (1975) Reaction of glutathione with conjugated carbonyls. Z Naturforsch 30:466–473

    CAS  Google Scholar 

  • Grimshaw CE (1992) Aldose reductase: model for a new paradigm of enzymatic perfection in detoxification catalysts. Biochemistry 31:10139–10145

    Article  CAS  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265:20715–20718

    CAS  Google Scholar 

  • Ji C, Mirvish SS, Nickols J, Ishizaki H, Lee MJ, Yang CS (1989) Formation of hydroxy derivatives, aldehydes, and nitrite from n-nitrosomethyl-n-amylamine by rat liver microsomes and by purified cytochrome P-450 IIB1. Cancer Res 49:5299–5304

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Larroy C, Fernández MR, Gonzáles E, Parés X, Biosca JA (2002) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172

    Article  CAS  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  Google Scholar 

  • Marinello AJ, Bansal SK, Paul B, Koser PL, Love J, Struck RF, Gurtoo HL (1984) Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450. Cancer Res 44:4615–4621

    CAS  Google Scholar 

  • Maxwell ES (1957) The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J Biol Chem 229:139–151

    CAS  Google Scholar 

  • Mott JE, Grant RA, Ho YS, Platt T (1985) Maximizing gene expression from plasmid vectors containing the λ PL promoter: strategies for overproducing transcription termination factor ρ. Proc Natl Acad Sci U S A 82:88–92

    Article  CAS  Google Scholar 

  • Neudecker T, Eder E, Deininger D, Henschler D (1991) Mutagenicity of 2-methylacrolein, 2-ethylacrolein and 2-propylacrolein in Salmonella typhimurium TA100. A comparative study. Mutat Res 264:193–196

    Article  CAS  Google Scholar 

  • Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, Sandoval JM, Castro ME, Elías AO, Vásquez CC (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2:e211

    Article  Google Scholar 

  • Pérez JM, Arenas FA, Pradenas GA, Sandoval JM, Vásquez CC (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353

    Article  Google Scholar 

  • Persson B, Krook M, Jörnvall H (1991) Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem 200:537–543

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  • Raner GM, Chiang EW, Vaz AD, Coon MJ (1997) Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: relationship to aldehyde deformylation via a peroxyhemiacetal intermediate. Biochemistry 36:4895–4902

    Article  CAS  Google Scholar 

  • Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314

    Article  Google Scholar 

  • Schweiger P, Volland S, Deppenmeier U (2007) Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 13:147–155

    Article  CAS  Google Scholar 

  • Schweiger P, Gross H, Wesener S, Deppenmeier U (2008) Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes. Appl Microbiol Biotechnol 80:995–1006

    Article  CAS  Google Scholar 

  • Semchyshyn H, Bagnyukova T, Storey K, Lushchak V (2005) Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902

    Article  CAS  Google Scholar 

  • Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135

    Article  CAS  Google Scholar 

  • Szweda LI, Uchida K, Tsai L, Stadtman ER (1993) Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem 268:3342–3347

    CAS  Google Scholar 

  • Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden HM (1997) Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 36:6294–6304

    Article  CAS  Google Scholar 

  • Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem 268:6388–6393

    CAS  Google Scholar 

  • Yang IY, Hossain M, Miller H, Khullar S, Johnson F, Grollman A, Moriya M (2001) Responses to the major acrolein-derived deoxyguanosine adduct in Escherichia coli. J Biol Chem 276:9071–9076

    Article  CAS  Google Scholar 

  • Yoon SJ, Park JE, Yang JH, Park JW (2002) OxyR regulon controls lipid peroxidation-mediated oxidative stress in Escherichia coli. J Biochem Mol Biol 35:297–301

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by funds from Bundesministerium für Bildung und Forschung; Germany (BMBF; Project-No 0313751P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweiger, P., Deppenmeier, U. Analysis of aldehyde reductases from Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 85, 1025–1031 (2010). https://doi.org/10.1007/s00253-009-2154-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2154-x

Keywords

Navigation