Skip to main content
Log in

Computational models for monitoring the trans-membrane potential with fluorescent probes: the DiSC3(5) case

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Fluorescent permeant charged probes are commonly used for monitoring the trans-membrane potential in lipid vesicles and biological membranes, which has been earlier described by various mathematical models. In the present study, we developed a more complex model based on the computational step-by-step analysis of the influence of various factors, such as the membrane surface potential, ionic strength, and the aggregation properties of cationic cyanine probe DiSC3(5) in the membrane and aqueous phases, in addition to the Nernstian distribution of the probe across the membrane and the hydrophobic interaction with the lipid bilayer. The final full model allows prediction of the optimal experimental conditions for monitoring the trans-membrane potential, such as the probe/lipid ratio and the concentration of liposomes, with a given percentage of negatively charged phospholipids in the membrane, the ionic strength of the aqueous media, the “membrane–water” partition coefficient and the aggregation properties of the probe, as well as the most adequate mode of fluorescence measurement. In agreement with many experimental studies, this model showed high voltage sensitivity of the quantity of the aqueous phase DiSC3(5) monomers, showing its almost exponential decrease with an increase in the trans-membrane potential value. The model also demonstrated the highest voltage sensitivity of the ratio of the quantity of DiSC3(5) monomers in the aqueous phases to that in the membrane phase. A new combined parameter, the logarithmic function of this ratio, demonstrated almost linear changes within a wide range of the trans-membrane potential changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DiSC3(5):

3,3′-dipropylthiadicarbocyanine iodide

References

  • Apell HJ, Bersch B (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta 903(3):480–494

    Article  CAS  PubMed  Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Agafonov AV, Penkov NV, Samartsev VN, Lemasters JJ, Mironova GD (2015) Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. Biochim Biophys Acta 1848(10 Pt A):2200–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting JR, Phan TV, Kamali E, Dowben RM (1989) Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction. Biophys J 56(5):979–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrini G, Verkman AS (1986a) Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles. J Membr Biol 90(2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Cabrini G, Verkman AS (1986b) Potential-sensitive response mechanism of diS-C3-(5) in biological membranes. J Membr Biol 92(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Chanturiya AN, Basañez G, Schubert U, Henklein P, Yewdell JW, Zimmerberg J (2004) PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J Virol 78(12):6304–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke RJ (1991) Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles. Biophys Chem 39(1):91–106

    Article  CAS  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88

    CAS  PubMed  Google Scholar 

  • Deleers M, Servais JP, de Laveleye F, Wulfert E (1984) Effect of lipid composition changes on carbocyanine dye fluorescent response. Biochem Biophys Res Commun 123(1):178–185

    Article  CAS  PubMed  Google Scholar 

  • Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 53(5):785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epps DE, Wolfe MK, Groppi V (1994) Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Chem Phys Lipids 69(2):137–150

    Article  CAS  PubMed  Google Scholar 

  • Faria JL, Berberan-Santos M, Prieto MJ (1990) A comment on the localization of cyanine dye binding to brush-border membranes by the fluorescence quenching of n-(9-anthroyloxy) fatty acid probes. Biochim Biophys Acta 1026(1):133–134

    Article  CAS  PubMed  Google Scholar 

  • Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590(12):2845–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes DH (1974) 1-Anilino-8-naphthalenesulfonate: a fluorescent indicator of ion binding electrostatic potential on the membrane surface. J Membr Biol 17(3):341–366

    Article  CAS  PubMed  Google Scholar 

  • Hrynevich SV, Pekun T, Waseem T, Fedorovich SV (2015) Influence of glucose deprivation on membrane potentials of plasma membranes, mitochondria and synaptic vesicles in rat brain synaptosomes. Neurochem Res 40(6):1188–1196

    Article  CAS  PubMed  Google Scholar 

  • Ivashchuk-Kienbaum YA (1996) Monitoring of the membrane potential in proteoliposomes with incorporated cytochrome-c oxidase using the fluorescent dye indocyanine. J Membr Biol 151(3):247–259

    Article  CAS  PubMed  Google Scholar 

  • Ivkov VG, Pechatnikov VA, Ivkova MN (1984) Redistribution of positively charged probes in membrane suspension under the action of transmembrane potential. Gen Physiol Biophys 3(1):19–30

    CAS  PubMed  Google Scholar 

  • Ivkova MN, Pechatnikov VA, Ivkov VG (1983) The behavior of the fluorescent probe diS-C3-(5) in membrane and aqueous media. Gen Physiol Biophys 2(6):473–486

    CAS  PubMed  Google Scholar 

  • Ivkova MN, Pechatnikov VA, Ivkov VG (1984) Mechanism of fluorescent response of the probe diS-C3-(5) to transmembrane potential changes in a lecithin vesicle suspension. Gen Physiol Biophys 3(2):97–117

    CAS  PubMed  Google Scholar 

  • Ivkova MN, Pechatnikov VA, Gracheva OA, Pechatnikova EV, Ivkov VG (1987) Interaction of the voltage-sensing fluorescent probe diS-C3-(5) with dipalmitoylphosphatidylcholine liposomes. Gen Physiol Biophys 6(1):45–55

    CAS  PubMed  Google Scholar 

  • Kay RE, Walwick ER, Gifford CK (1964) Spectral changes in a cationic dye due to interaction with macromolecules. I. Behavior of dye alone in solution and the effect of added macromolecules. J Phys Chem 68(7):1896–1906

    Article  CAS  Google Scholar 

  • Khailova LS, Nazarov PA, Sumbatyan NV, Korshunova GA, Rokitskaya TI, Dedukhova VI, Antonenko YN, Skulachev VP (2015) Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length. Biochemistry 80(12):1589–1597

    CAS  PubMed  Google Scholar 

  • Klapperstück T, Glanz D, Hanitsch S, Klapperstück M, Markwardt F, Wohlrab J (2013) Calibration procedures for the quantitative determination of membrane potential in human cells using anionic dyes. Cytom A 83(7):612–626

    Article  CAS  Google Scholar 

  • Klymchenko AS, Stoeckel H, Takeda K, Mély Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110(27):13624–13632

    Article  CAS  PubMed  Google Scholar 

  • Krasne S (1977) Cyanine dye-induced electrical and fluorescence effects in neutral and negative bilayer membranes. Biophys J 17:214a

    Article  Google Scholar 

  • Krasne S (1980a) Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes. Biophys J 30(3):415–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasne S (1980b) Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. Biophys J 30(3):441–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemeshko VV (2014) Competitive interactions of amphipathic polycationic peptides and cationic fluorescent probes with lipid membrane: experimental approaches and computational model. Arch Biochem Biophys 545:167–178

    Article  CAS  PubMed  Google Scholar 

  • Lemeshko VV, Alvarez JA (2013) Computational model for monitoring of the membrane potential with the fluorescent probe DiSC3(5). FASEB J 27(802):1

    Google Scholar 

  • Loew LM (2015) Design and use of organic voltage sensitive dyes. Adv Exp Med Biol 859:27–53

    Article  PubMed  Google Scholar 

  • McLaughlin S, Harary H (1974) Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys J 14(3):200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin SG, Szabo G, Eisenman G, Ciani SM (1970) Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci USA 67(3):1268–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin SG, Szabo G, Eisenman G (1971) Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol 58(6):667–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100(6):1973–2012

    Article  CAS  PubMed  Google Scholar 

  • Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3:e430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plášek J, Gášková D (2014) Complementary methods of processing diS-C3(3) fluorescence spectra used for monitoring the plasma membrane potential of yeast: their pros and cons. J Fluoresc 24(2):541–547

    Article  CAS  PubMed  Google Scholar 

  • Plášek J, Hrouda V (1991) Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies. Eur Biophys J 19(4):183–188

    Article  PubMed  Google Scholar 

  • Plášek J, Gášková D, Lichtenberg-Fraté H, Ludwig J, Höfer M (2012) Monitoring of real changes of plasma membrane potential by diS-C3(3) fluorescence in yeast cell suspensions. J Bioenerg Biomembr 44(5):559–569

    Article  CAS  PubMed  Google Scholar 

  • Portele A, Lenz J, Höfer M (1997) Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution. J Bioenerg Biomembr 29(6):603–609

    Article  CAS  PubMed  Google Scholar 

  • Rokitskaya TI, Sumbatyan NV, Tashlitsky VN, Korshunova GA, Antonenko YN, Skulachev VP (2010) Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes. Biochim Biophys Acta 1798(9):1698–1706

    Article  CAS  PubMed  Google Scholar 

  • Salama G, Johnson RG, Scarpa A (1980) Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules. J Gen Physiol 75(2):109–140

    Article  CAS  PubMed  Google Scholar 

  • Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3330

    Article  CAS  PubMed  Google Scholar 

  • Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Sorochkina AI, Kovalchuk SI, Omarova EO, Sobko AA, Kotova EA, Antonenko YN (2013) Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes. Biochim Biophys Acta 1828(11):2428–2435

    Article  CAS  PubMed  Google Scholar 

  • Tipping E, Ketterer B, Christodoulides L (1979) Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some uncharged molecules (2-acetylaminofluorene, 4-dimethylaminoazobenzene, oestrone and testosterone) that bind to ligandin and aminoazo-dye-binding protein A. Biochem J 180(2):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomov TC (1986) Pyronin G as a fluorescent probe for quantitative determination of the membrane potential of mitochondria. J Biochem Biophys Methods 13(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Toner M, Vaio G, McLaughlin A, McLaughlin S (1988) Adsorption of cations to phosphatidylinositol 4,5-bisphosphate. Biochemistry 27(19):7435–7443

    Article  CAS  PubMed  Google Scholar 

  • Toyomizu M, Okamoto K, Akiba Y, Nakatsu T, Konishi T (2002) Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes. Biochim Biophys Acta 1558(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Trip H, Mulder NL, Lolkema JS (2012) Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524. J Biol Chem 287(14):11195–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Večeř J, Heřman P, Holoubek A (1997) Diffusion membrane potential in liposomes: setting by ion gradients, absolute calibration and monitoring of fast changes by spectral shifts of diS-C3(3) fluorescence maximum. Biochim Biophys Acta 1325(2):155–164

    Article  PubMed  Google Scholar 

  • Vekshin NL (2013) On measurement of mitochondrial transmembrane potential with fluorescent probes. Biophysics 58(6):845–850

    Article  CAS  Google Scholar 

  • Waggoner AS, Wang CH, Tolles RL (1977) Mechanism of potential-dependent light absortion changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J Membr Biol 33:109–140

    Article  CAS  PubMed  Google Scholar 

  • West W, Pearce S (1965) The dimeric state of cyanine dyes. J Phys Chem 69(6):1894–1903

    Article  CAS  Google Scholar 

  • Xu C, Loew LM (2003) The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes. Biophys J 84(4):2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ytzhak S, Wuskell JP, Loew LM, Ehrenberg B (2010) Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes. J Phys Chem B 114(31):10097–10104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Han X, Gross RW (1999) Phospholipid-subclass-specific partitioning of lipophilic ions in membrane–water systems. Biochem J 338(Pt 3):651–658

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Colciencias (Colombia), Grant number 5201-545-31565, and by the National University of Colombia, Medellin Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Lemeshko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Bustamante, J.A., Lemeshko, V.V. Computational models for monitoring the trans-membrane potential with fluorescent probes: the DiSC3(5) case. Eur Biophys J 45, 815–830 (2016). https://doi.org/10.1007/s00249-016-1126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1126-1

Keywords

Navigation