Skip to main content
Log in

Influence of surfactant protein C on the interfacial behavior of phosphatidylethanolamine monolayers

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In the current work we study with monolayer tensiometry and Brewster angle microscopy (BAM) the surface properties of Dipalmitoleoylphosphatidylethanolamine (DPoPE) films at the air/water interface in presence and absence of specific surfactant protein C (SP-C). DPoPE is used, as it readily forms both lamellar (Lα) and non-lamellar inverted hexagonal (HII) phases and appears as a suitable model phospholipid for probing the interfacial properties of distinct lipid phases. At pure air/water interface Lα shows faster adsorption and better surface disintegration than HII phase. The interaction of DPoPE molecules with SP-C (predeposited at the interface) results in equalizing of the interfacial disintegration of the both phases (reaching approximately the same equilibrium surface tension) although the adsorption kinetics of the lamellar phase remains much faster. Monolayer compression/decompression cycling revealed that the effect of SP-C on dynamic surface tensions (γ max and γ min) of mixed films is remarkably different for the two phases. If γ max for Lα decreased from the first to the third cycle, the opposite effect is registered for HII where γ max increases during cycling. Also the significant decrease of γ min for Lα in SP-C presence is not observed for HII phase. BAM studies reveal the formation of more uniform and homogeneously packed DPoPE monolayers in the presence of SP-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamson A, Gast A (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

    Google Scholar 

  • Baoukina S, Monticelli L, Amrein M, Tieleman DP (2007) The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93:3775–3782. doi:10.1529/biophysj.107.113399

    Article  PubMed  CAS  Google Scholar 

  • Birdi K (1989) Lipid and bioplolymer monolayers at liquid interfaces, 1st edn. Springer, Berlin

    Google Scholar 

  • Biswas S, Rananavare S, Hall S (2007) Differential effects of lysophosphatidylcholine on the adsorption of phospholipids to an air/water interface. Biophys J 92:493–501. doi:10.1529/biophysj.106.089623

    Article  PubMed  CAS  Google Scholar 

  • Cham B, Knowles B (1976) A solvent system for delipidation. of plasma or serum without protein precipitation. J Lipid Res 17:176–181

    PubMed  CAS  Google Scholar 

  • Chernomordik L, Leikina E, Kozlov M, Frolov V, Zimmerberg J (1999) Structural intermediates in influenza haemagglutinin-mediated fusion. Mol Membr Biol 16:33–42. doi:10.1080/096876899294733

    Article  PubMed  CAS  Google Scholar 

  • Christova Y, Enchev E, Lalchev Z (1998) Effects of pulmonary surfactant proteins SP-B and SP-C and calcium ions on the surface properties of hydrophobic fractions of lung surfactant. Eur Biophys J 28:59–66

    Article  CAS  Google Scholar 

  • Cullis P, Hope M, DeKruijff B, Verkleij A, Tilcock C (1985) Phospholipids and cellular regulation, vol 1. In: Kuo JF (ed) CRC Press, Boca Raton, pp 1–59

  • Ding J, Doudevski I, Warriner H, Alig T, Zasadzinski J, Waring A, Sherman M (2003) Nanostructure changes in lung surfactant monolayers induced by interactions between palmitoyloleoylphosphatidylglycerol and surfactant protein B. Langmuir 19:1539–1550. doi:10.1021/la0261794

    Article  CAS  Google Scholar 

  • Eibl H, Woolley P (1979) Electrostatic interactions at charged lipid-membraneshydrogen-bonds in lipid-membrane surfaces. Biophys Chem 10:261–271. doi:10.1016/0301-4622(79)85015-2

    Article  PubMed  CAS  Google Scholar 

  • Gaines G (1966) Insoluble monolayers at liquid–gas interfaces. Interscience, New York

    Google Scholar 

  • Gugliotti M, Politi MJ (2001) The role of the gel–liquid crystalline phase transition in the lung surfactant cycle. Biophys Chem 89:243–251. doi:10.1016/S0301-4622(00)00240-4

    Article  PubMed  CAS  Google Scholar 

  • Henon S, Meunier J (1991) Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Rev Sci Instrum 62:936–939. doi:10.1063/1.1142032

    Article  CAS  Google Scholar 

  • Hills B (1988) Biology of surfactant. Cambridge University Press, London

    Google Scholar 

  • Honing D, Mobius D (1991) Direct visualization of monolayer at the air–water interface by Brewster angle microscopy. J Phys Chem 95:4590–4592. doi:10.1021/j100165a003

    Article  Google Scholar 

  • Jensen J, Schutzbach J (1984) Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry 23:1115–1119. doi:10.1021/bi00301a012

    Article  CAS  Google Scholar 

  • Jordanova A, Lalchev Z, Tenchov B (2003) Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases. Eur Biophys J 31:626–632

    PubMed  CAS  Google Scholar 

  • Kinnunen P (1992) Fusion of lipid bilayers: a model involving mechanistic connection to HII phase forming lipids. Chem Phys Lipids 63:251–258. doi:10.1016/0009-3084(92)90041-M

    Article  PubMed  CAS  Google Scholar 

  • Kruger P, Schalke M, Wang Z, Notter R, Dluhy R, Losche M (1999) Effect of hydrophobic surfactant proteins SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark field microscopy. Biophys J 77:903–914

    Article  PubMed  CAS  Google Scholar 

  • Kruger P, Baatz JE, Dluhya RA, Losche M (2002) Effect of hydrophobic surfactant protein SP-C on binary phospholipid monolayers. Molecular machinery at the airywater interface. Biophys Chem 99:209–228. doi:10.1016/S0301-4622(02)00184-9

    Article  PubMed  CAS  Google Scholar 

  • Lalchev Z, Todorov R, Exerowa D (2008) Thin liquid films as a model to study surfactant layers on the alveolar surface. Curr Opin Colloid Interface Sci 13:183–193. doi:10.1016/j.cocis.2007.11.005

    Article  CAS  Google Scholar 

  • Lipp MM, Lee KYC, Zasadzinski JA, Waring AJ (1996) Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science 273:1196–1199. doi:10.1126/science.273.5279.1196

    Article  PubMed  CAS  Google Scholar 

  • Lipp MM, Lee KYC, Zasadzinski JA, Waring AJ (1997) Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers. Biophys J 72:2783–2804

    Article  PubMed  CAS  Google Scholar 

  • Litzinger D, Huang L (1992) Phosphatodylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim Biophys Acta 1113:201–227

    PubMed  CAS  Google Scholar 

  • Malcharek S, Hinz A, Hilterhaus L, Galla H (2005) Multilayer structures in lipid monolayer films containing surfactant protein C: effects of cholesterol and POPE. Biophys J 88:2638–2649. doi:10.1529/biophysj.104.050823

    Article  PubMed  CAS  Google Scholar 

  • Mansour HM, Zografi G (2007) Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air–water interface. Langmuir 23:3809–3819. doi:10.1021/la063053o

    Article  PubMed  CAS  Google Scholar 

  • Nag K, Perez-Gil J, Cruz A, Keough K (1996a) Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers. Biophys J 71:246–256

    Article  PubMed  CAS  Google Scholar 

  • Nag K, Perez-Gil J, Cruz A, Keough KMW (1996b) Spontaneous formation of interfacial lipid-protein monolayers during adsorption from vesicles. Biophys J 71:1356–1363

    Article  PubMed  CAS  Google Scholar 

  • Nag K, Taneva S, Perez-Gil J, Cruz A, Keough K (1997) Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films. Biophys J 72:2638–2650

    Article  PubMed  CAS  Google Scholar 

  • Ng V, Herndon V, Mendelson C, Snyder J (1983) Characterization of rabbit surfactant-associated proteins. Biochim Biophys Acta 754:218–226

    PubMed  CAS  Google Scholar 

  • Palaniyar N, Ridsdale R, Hearn S, Possmayer F, Harauz G (1999) Formation of membrane lattice structures and their specific interactions with surfactant protein A. Am J Physiol Lung Cell Mol Physiol 276:642–649

    Google Scholar 

  • Pattus F, Desnuelle P, Verger R (1978) Spreading of liposomes at the air/water interface. Biochim Biophys Acta 507:62–70. doi:10.1016/0005-2736(78)90374-7

    Article  PubMed  CAS  Google Scholar 

  • Perez-Gil J (2002) Molecular interactions in pulmonary surfactant films. Biol Neonat 81:6–15. doi:10.1159/000056765

    Article  CAS  Google Scholar 

  • Perkins W, Dause R, Parente R, Minchey S, Neuman K, Gruner S, Taraschi T, Janoff A (1996) Role of lipid polymorphism in pulmonary surfactant. Science 273:330–332. doi:10.1126/science.273.5273.330

    Article  PubMed  CAS  Google Scholar 

  • Ross M, Krol S, Janshoff A, Galla H (2002) Kinetics of phospholipid insertion into monolayers containing the lung surfactant proteins SP-B or SP-C. Eur Biophys J 31:52–61. doi:10.1007/s002490100181

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger M, Kolleck I, Putz G, Wauer RR, Stevens P, Rüstow B (1998) Plasmalogens effectively reduce the surface tension of surfactant-like phospholipid mixtures. Am J Physiol Lung Cell Mol Physiol 274:143–148

    Google Scholar 

  • Rüdiger M, Tölle A, Meier W, Rüstow B (2005) Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am J Physiol Lung Cell Mol Physiol 288:379–383. doi:10.1152/ajplung.00176.2004

    Article  CAS  Google Scholar 

  • Schindler H (1980) Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett 122:77–79. doi:10.1016/0014-5793(80)80405-4

    Article  PubMed  CAS  Google Scholar 

  • Seddon J (1990) Structure of the inverted hexagonal (HII) phase and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69

    PubMed  CAS  Google Scholar 

  • Seddon J, Templer R (1995) Polymorphism of lipid-water systems. In: Handbook of biological physics. Elsevier Science B.V., Amsterdam, pp 97–160

  • Serrano A, Perez-Gil J (2006) Protein–lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141:105–118. doi:10.1016/j.chemphyslip.2006.02.017

    Article  PubMed  CAS  Google Scholar 

  • Shanmukh S, Howell P, Baatz J, Dluhy R (2002) Effect of hydrophobic surfactant proteins SP-B and SP-C on phospholipid monolayers. Protein structure studied using 2D IR and βν correlation analysis. Biophys J 83:2126–2141

    Article  PubMed  CAS  Google Scholar 

  • Shin YS (1962) Spectrophotometric ultramicrodetermination of inorganic phosphorus and lipid phosphorus in serum. Anal Chem 34:1164–1166. doi:10.1021/ac60189a043

    Article  CAS  Google Scholar 

  • Siegel D (1993) The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J 65:2124–2140

    Article  PubMed  CAS  Google Scholar 

  • Siegel D, Burns J, Chestnut M, Talmon Y (1989) Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J 56:161–169

    Article  PubMed  CAS  Google Scholar 

  • Simatos G, Forward K, Morrow M, Keough K (1990) Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C. Biochemistry 29:5807–5814. doi:10.1021/bi00476a023

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Hall S, Notter R (1996) Roles of different hydrophobic constituents in the adsorption of pulmonary surfactant. J Lipid Res 37:790–798

    PubMed  CAS  Google Scholar 

  • Wang L, Cai P, Galla H, He H, Flach C, Mendelsohn R (2005) Monolayer-multilayer transitions in a lung surfactant model: IR reflection–absorption spectroscopy and AFM. Eur Biophys J 34:243–254. doi:10.1007/s00249-004-0446-8

    Article  PubMed  CAS  Google Scholar 

  • Weaver T, Conkright J (2001) Function of surfactant proteins B and C. Annu Rev Physiol 63:555–578. doi:10.1146/annurev.physiol.63.1.555

    Article  PubMed  CAS  Google Scholar 

  • Yu SH, Harding PGR, Possmayer F (1984) Artificial pulmonary surfactant. Potential role for hexagonal HII phase in the formation of a surface-active monolayer. Biochim Biophys Acta 776:37–47. doi:10.1016/0005-2736(84)90248-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by The Scientific Foundation of Bulgarian Ministry of Education and Science (grant N BU-B-2/05). We also gratefully acknowledge the support of Prof. Boris Tenchov (Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, Illinois 60208) who supplied us with DPoPE and characterized the thermal bulk phase transitions of the phospholipid as described in our previous study (Jordanova et al. 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena Jordanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordanova, A., Georgiev, G.A., Alexandrov, S. et al. Influence of surfactant protein C on the interfacial behavior of phosphatidylethanolamine monolayers. Eur Biophys J 38, 369–379 (2009). https://doi.org/10.1007/s00249-008-0380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0380-2

Keywords

Navigation