Skip to main content
Log in

Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The article addresses the formulation and characterization of the polyvinyl alcohol membrane (PVA) with citric acid, succinic acid and their mixing as crosslinking agents. PVA is highly hydrophilic and has excellent film (membrane) properties. Chemical crosslinking is the most common approach to stabilize and produce PVA membranes with enhanced mechanical resistance. Thus, we prepared membranes with variable PVA and crosslinking agents. The thermal properties of the membranes were analyzed using thermogravimetric method (TGA), while the functional groups formed in the membrane were determined using Fourier-transform infrared spectroscopy. The water absorption of the membranes was determined by the degree of swelling. The oxidative stability was obtained using the Fenton test. The ion exchange capacity was also evaluated. Membrane structure, morphology and surface properties were analyzed by topography and adhesion force using atomic force microscopy. The scanning electron microscopy was used to elucidate the fractures. The results indicated that the membranes exhibited roughness uniformly distributed, indicating homogeneous films and excellent crosslinking features allied to enhanced adhesion and strength properties with good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim DS, Park HB, Rhim JW, Lee YM (2004) Preparation and characterization of crosslinked PVA/SiO 2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240(1):37–48

    Article  CAS  Google Scholar 

  2. Hassan CM, Peppas NA (2000) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym·PVA Hydrogels Anion Polym Nanocompos 153:37–65

    Article  CAS  Google Scholar 

  3. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  4. Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y (2006) Electrospun poly (vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66:1559–1564

    Article  CAS  Google Scholar 

  5. Kang GD, Cao YM (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600

    Article  CAS  Google Scholar 

  6. Du JR, Peldszus S, Huck PM, Feng X (2009) Modification of poly (vinylidene fluoride) ultrafiltration membranes with poly (vinyl alcohol) for fouling control in drinking water treatment. Water Res 43:4559–4568

    Article  CAS  Google Scholar 

  7. Hongguo Z, Di J, Bopeng Z, Jin GH, Yongsheng C (2017) A novel hybrid poly (vinyl alcohol) (PVA)/poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes for reverse electrodialysis power system. Electrochimica Acta 239:65–73

    Article  Google Scholar 

  8. Zhang J, Qiao G, Jiang L, Liu YL (2013) Cross-linked poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. J Power Sources 240:359–367

    Article  CAS  Google Scholar 

  9. Sonker AK, Rathore K, Nagarale R, Verma V (2017) Crosslinking of polyvinyl alcohol (PVA) and effect of crosslinker shape (aliphatic and aromatic) thereof. J Polym Environ 26:1782–1794

    Article  Google Scholar 

  10. González-Guisasola C, Ribes-Greus A (2018) Dielectric relaxations and conductivity of crosslinked PVA/SSA/GO composite membranes for fuel cells. Polym Test 67:55–67

    Article  Google Scholar 

  11. Kakati N, Maiti J, Das G, Lee SH, Yoon YS (2015) An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid. Int J Hydrog Energy 40:7114–7123

    Article  CAS  Google Scholar 

  12. Rhim J, Park H, Lee C, Jun J, Kim D, Lee Y (2004) Membranas reticuladas de poli (álcool vinílico) contendo grupo ácido sulfônico: transporte de prótons e metanol através de membranas. J Membr Sci 238:143–151

    Article  CAS  Google Scholar 

  13. Ahmad AL, Yusuf NM, Ooi BS (2012) Preparation and modification of poly (vinyl) alcohol membrane: effect of crosslinking time towards its morphology. Desalination 287:35–40

    Article  CAS  Google Scholar 

  14. Ebenezer D, Deshpande AP, Haridoss P (2016) Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells. J Power Sources 304:282–292

    Article  CAS  Google Scholar 

  15. Bowen WR, Welfoot JS (2002) Predictive modeling of nanofiltration: membrane specification and process optimization. Desalination 147:197–203

    Article  CAS  Google Scholar 

  16. Johnson DJ, Al-Malek SA, Al-Rashdi BAM, Hilal N (2012) Atomic force microscopy of nanofiltration membranes: effect of imaging mode and environment. J Membr Sci 389:486–498

    Article  CAS  Google Scholar 

  17. Carvalho AL, Mauger IF, Silva V, Hernández A, Palacio L, Pradános P (2011) AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate. J Mater Sci 46:3356–3369

    Article  CAS  Google Scholar 

  18. Mohy-Eldin MS, Farag HA, Tamer TM, Konsowa AH, Gouda MH (2019) Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polym Bull. https://doi.org/10.1007/s00289-019-02995-6

    Article  Google Scholar 

  19. Vatanpour V, Salehi E, Sahebjamee N, Ashrafi M (2018) Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.010

    Article  Google Scholar 

  20. Shabanpanah S, Omrani A (2019) Influences of crosslink density on the performance of PVA-diphenylamine-4-sulfonic acid sodium salt composite membranes. Solid State Ion 338:12–19

    Article  CAS  Google Scholar 

  21. Wang N, Si Y, Yu J, Fong H, Ding B (2017) Nano-fiber/net structured PVA membrane: effects of formic acid as solvent and crosslinking agent on solution properties and membrane morphological structures. Mater Des 120:135–143

    Article  CAS  Google Scholar 

  22. Cadinelli BLS, do Nascimento FC, Faria TAA, Freire LM, da Silva L, de Castro JA, Brum FJB (2018) Synthesis and characterization by ellipsometry of cationic membranes for fuel cells. Mater Sci Forum 930:625–630

    Article  Google Scholar 

  23. Sahin A (2018) The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells. Electrochim Acta 271:127–136

    Article  CAS  Google Scholar 

  24. Saha S, Kumar AG, Tabish Noori M, Banerjee S, Ghangrekar MM, Komber H, Voit B (2018) New crosslinked sulfonated polytriazoles: Proton exchange properties and microbial fuel cell performance. Eur Polym J 103:322–334

    Article  CAS  Google Scholar 

  25. Vijayalekshmi V, Khastgir D (2017) Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J Membr Sci 523:45–59

    Article  CAS  Google Scholar 

  26. Zhu M, Hua D, Zhong M, Zhang L, Wang F, Gao B, Huang C (2018) Antibacterial and effective air filtration membranes by “green” electrospinning and citric acid crosslinking. Colloid Interface Sci Commun 23:52–58

    Article  CAS  Google Scholar 

  27. Wang S, Ren J, Li W, Sun R, Liu S (2014) Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohyd Polym 103:94–99

    Article  CAS  Google Scholar 

  28. Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Tian W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohyd Polym 74:763–770

    Article  CAS  Google Scholar 

  29. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711

    Article  CAS  Google Scholar 

  30. Alakanandanaa A, Subrahmanyam AR, Siva KJ (2016) Structural and electrical conductivity studies of pure PVA and PVA doped with succinic acid polymer electrolyte system. Mater Today Proc 3:3680–3688

    Article  Google Scholar 

  31. Kolsoum P, Yaghoub M, Saeed F (2016) Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Res 3:496–513

    Article  Google Scholar 

  32. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26

    Article  CAS  Google Scholar 

  33. Huang YJ, Ye YS, Yen YC, Tsai LD, Hwang BJ, Chang FC (2011) Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs). Int J Hydrog Energy 36:15333–15343

    Article  CAS  Google Scholar 

  34. Kim D (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240:37–48

    Article  CAS  Google Scholar 

  35. Van Etten EA, Ximenes ES, Tarasconi LT, Garcia ITS, Forte MMC, Boudinov H (2014) Insulating characteristics of polyvinyl alcohol for integrated electronics. Thin Solid Films 568:111–116

    Article  Google Scholar 

  36. Falath W, Sabir A, Jacob KI (2017) Novas membranas de osmose reversa compostas de conjugados de PVA / goma arábica modificados: Mitigação de incrustação biológica e aumento da resistência ao cloro. Carbohyd Polym 155:28–39

    Article  CAS  Google Scholar 

  37. Soler-Crespo RA, Mao L, Wen J, Nguyen HT, Zhang X, Wei X, Espinosa HD (2019) Atomically thin polymer layer enhances toughness of graphene oxide monolayers. Matter. https://doi.org/10.1016/j.matt.2019.04.005

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Campos do Nascimento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, F.C., de Aguiar, L.C.V., Costa, L.A.T. et al. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents. Polym. Bull. 78, 917–929 (2021). https://doi.org/10.1007/s00289-020-03142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03142-2

Keywords

Navigation