Skip to main content
Log in

Volatile and Dissolved Organic Carbon Sources Have Distinct Effects on Microbial Activity, Nitrogen Content, and Bacterial Communities in Soil

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Variation in microbial use of soil carbon compounds is a major driver of biogeochemical processes and microbial community composition. Available carbon substrates in soil include both low molecular weight-dissolved organic carbon (LMW-DOC) and volatile organic compounds (VOCs). To compare the effects of LMW-DOC and VOCs on soil chemistry and microbial communities under different moisture regimes, we performed a microcosm experiment with five levels of soil water content (ranging from 25 to 70% water-holding capacity) and five levels of carbon amendment: a no carbon control, two dissolved compounds (glucose and oxalate), and two volatile compounds (methanol and α-pinene). Microbial activity was measured throughout as soil respiration; at the end of the experiment, we measured extractable soil organic carbon and total extractable nitrogen and characterized prokaryotic communities using amplicon sequencing. All C amendments increased microbial activity, and all except oxalate decreased total extractable nitrogen. Likewise, individual phyla responded to specific C amendments—e.g., Proteobacteria increased under addition of glucose, and both VOCs. Further, we observed an interaction between moisture and C amendment, where both VOC treatments had higher microbial activity than LMW-DOC treatments and controls at low moisture. Across moisture and C treatments, we identified that Chloroflexi, Nitrospirae, Proteobacteria, and Verrucomicrobia were strong predictors of microbial activity, while Actinobacteria, Bacteroidetes, and Thaumarcheota strongly predicted soil extractable nitrogen. These results indicate that the type of labile C source available to soil prokaryotes can influence both microbial diversity and ecosystem function and that VOCs may drive microbial functions and composition under low moisture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Averill C, Waring BG, Hawkes CV (2016) Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Glob Change Biol 22:1957–1964. https://doi.org/10.1111/gcb.13219

    Article  Google Scholar 

  2. Hawkes CV, Waring BG, Rocca JD, Kivlin SN (2017) Historical climate controls soil respiration responses to current soil moisture. Proc Natl Acad Sci 114:6322–6327. https://doi.org/10.1073/pnas.1620811114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. https://doi.org/10.1016/j.soilbio.2015.01.025

    Article  CAS  Google Scholar 

  4. Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant, Cell Environ 37:1866–1891. https://doi.org/10.1111/pce.12340

    Article  CAS  PubMed  Google Scholar 

  5. Sauer D, Kuzyakov Y, Stahr K (2006) Short communication spatial distribution of root exudates of five plant species as assessed by

  6. Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360. https://doi.org/10.1016/j.soilbio.2019.05.011

    Article  CAS  Google Scholar 

  7. Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. https://doi.org/10.1016/j.soilbio.2013.01.002

    Article  CAS  Google Scholar 

  8. Li H, Yang S, Xu Z, Yan Q, Li X, van Nostrand JD, He Z, Yao F, Han X, Zhou J, Deng Y, Jiang Y (2017) Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biol Biochem 104:18–29. https://doi.org/10.1016/j.soilbio.2016.10.009

    Article  CAS  Google Scholar 

  9. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  10. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuckran PF, Fofanov V, Hungate BA, Morrissey EM, Schwartz E, Walkup J, Dijkstra P (2021) Rapid response of nitrogen cycling gene transcription to labile carbon amendments in a soil microbial community. MSystems 6:e00161–21. doi:https://doi.org/10.1128/mSystems.00161-21

  12. Dodla SK, Wang JJ, DeLaune RD, Cook Robert L (2008) Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Sci Total Environ 407:471–480. https://doi.org/10.1016/j.scitotenv.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  13. Ma H, Yin Y, Gao R, Taqi R, He X (2019) Response of nitrogen transformation to glucose additions in soils at two subtropical forest types subjected to simulated nitrogen deposition. J Soils Sediments 19:2166–2175. https://doi.org/10.1007/s11368-018-02237-8

    Article  CAS  Google Scholar 

  14. Madyastha KM, Bhattacharyya PK, Vaidyanathan CS (1977) Metabolism of a monoterpene alcohol, linalool, by a soil pseudomonad. Can J Microbiol 23:230–239. https://doi.org/10.1139/m77-035

    Article  CAS  PubMed  Google Scholar 

  15. Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable- isotope probing 12

  16. Asensio D, Yuste JC, Mattana S, Ribas À, Llusià J, Peñuelas J (2012) Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant Soil 360:163–174. https://doi.org/10.1007/s11104-012-1220-9

    Article  CAS  Google Scholar 

  17. McBride SG, Osburn ED, Barrett JE, Strickland MS (2019) Volatile methanol and acetone additions increase labile soil carbon and inhibit nitrification. Biogeochemistry 145:127–140. https://doi.org/10.1007/s10533-019-00595-0

    Article  Google Scholar 

  18. Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154. https://doi.org/10.1023/A:1004335419358

    Article  CAS  Google Scholar 

  19. McBride SG, Choudoir M, Fierer N, Strickland MS (2020) Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics. Ecology 101:e03130. https://doi.org/10.1002/ecy.3130

    Article  PubMed  Google Scholar 

  20. Asensio D, Peñuelas J, Filella I, Llusià J (2007) On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261. https://doi.org/10.1007/s11104-006-9190-4

    Article  CAS  Google Scholar 

  21. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636. https://doi.org/10.1016/j.soilbio.2008.01.018

    Article  CAS  Google Scholar 

  22. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506. https://doi.org/10.1007/s00425-009-1076-2

    Article  CAS  PubMed  Google Scholar 

  23. Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry 99:97–107. https://doi.org/10.1007/s10533-009-9393-x

    Article  CAS  Google Scholar 

  24. Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. Journal of Geophysical Research: Biogeosciences 115. https://doi.org/10.1029/2010JG001291

  25. Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326. https://doi.org/10.1890/04-1254

    Article  Google Scholar 

  26. Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137. https://doi.org/10.3354/ame01753

    Article  Google Scholar 

  27. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  CAS  PubMed  Google Scholar 

  28. Uribe-Convers S, Settles ML, Tank DC (2016) A phylogenomic approach based on PCR target enrichment and high throughput sequencing: resolving the diversity within the South American species of Bartsia L. (Orobanchaceae). PLoS ONE 11. https://doi.org/10.1371/journal.pone.0148203

  29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D (2011) Scikit-learn: machine learning in python. J Mach Learn 12:2825–2830

    Google Scholar 

  30. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  31. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (Complete Samples). Biometrika 52:591–611. https://doi.org/10.2307/2333709

    Article  Google Scholar 

  32. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  33. Lenth R, Singmann H, Love J, Buerkner P, Herve M (2020) emmeans: estimated marginal means, aka least-squares means

  34. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package

  35. Osburn ED, Badgley BD, Strahm BD, Aylward FO, Barrett JE (2021) Emergent properties of microbial communities drive accelerated biogeochemical cycling in disturbed temperate forests. Ecology n/a, e03553. https://doi.org/10.1002/ecy.3553

  36. Soong JL, Fuchslueger L, Marañon‐Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology 26. https://doi.org/10.1111/gcb.14962

  37. van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13. https://doi.org/10.1016/j.soilbio.2004.06.010

    Article  CAS  Google Scholar 

  38. Cleveland CC, Liptzin D (2007) C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252. https://doi.org/10.1007/s10533-007-9132-0

    Article  Google Scholar 

  39. Matsumoto S, Ae N, Matsumoto T (2005) Extraction of soil organic nitrogen by organic acids and role in mineralization of nitrogen in soil. Soil Sci Plant Nutr 51:425–430. https://doi.org/10.1111/j.1747-0765.2005.tb00048.x

    Article  CAS  Google Scholar 

  40. Kramshøj M, Albers CN, Holst T, Holzinger R, Elberling B, Rinnan R (2018) Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. Nat Commun 9:3412. https://doi.org/10.1038/s41467-018-05824-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L (2014) The Expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS ONE 9:e102458. https://doi.org/10.1371/journal.pone.0102458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kotak M, Isanapong J, Goodwin L, Bruce D, Chen A, Han CS, Huntemann M, Ivanova N, Land ML, Nolan M, Pati A, Woyke T, Rodrigues JLM (2015) Complete genome sequence of the Opitutaceae bacterium strain TAV5, a potential facultative Methylotroph of the wood-feeding termite Reticulitermes flavipes. Genome Announc 3:e00060-e115. https://doi.org/10.1128/genomeA.00060-15

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smolander A, Kanerva S, Adamczyk B, Kitunen V (2012) Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations? Plant Soil 350:1–26. https://doi.org/10.1007/s11104-011-0895-7

    Article  CAS  Google Scholar 

  44. Ouyang Y, Evans SE, Friesen ML, Tiemann LK (2018) Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biol Biochem 127:71–78. https://doi.org/10.1016/j.soilbio.2018.08.024

    Article  CAS  Google Scholar 

  45. Osburn ED, Barrett JE (2020) Abundance and functional importance of complete ammonia-oxidizing bacteria (comammox) versus canonical nitrifiers in temperate forest soils. Soil Biol Biochem 145:107801. https://doi.org/10.1016/j.soilbio.2020.107801

    Article  CAS  Google Scholar 

  46. Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127:173–188. https://doi.org/10.1007/s10533-016-0191-y

    Article  CAS  Google Scholar 

  47. Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. https://doi.org/10.1111/j.1469-8137.2012.04225.x

    Article  CAS  PubMed  Google Scholar 

  48. Senechkin IV, Speksnijder AGCL, Semenov AM, van Bruggen AHC, van Overbeek LS (2010) Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microb Ecol 60:829–839. https://doi.org/10.1007/s00248-010-9670-1

    Article  PubMed  Google Scholar 

  49. Ho A, Di Lonardo DP, Bodelier PLE (2017) Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93. https://doi.org/10.1093/femsec/fix006

  50. Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42:157–171. https://doi.org/10.1007/s10295-014-1537-x

    Article  CAS  PubMed  Google Scholar 

  51. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha T, Singh B, Saxena A, Dhaliwal H (2018) Actinobacteria from Rhizosphere: molecular diversity, distributions, and potential biotechnological applications, in: New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

  52. Kim Y-M, Nowack S, Olsen MT, Becraft ED, Wood JM, Thiel V, Klapper I, Kühl M, Fredrickson JK, Bryant DA, Ward DM, Metz TO (2015) Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00209

  53. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci 108:15892–15897. https://doi.org/10.1073/pnas.1107196108

    Article  PubMed  PubMed Central  Google Scholar 

  54. Norman JS, Barrett JE (2016) Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biol Biochem 94:169–172. https://doi.org/10.1016/j.soilbio.2015.11.015

    Article  CAS  Google Scholar 

  55. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (Eds.) (2006) The prokaryotes. Springer New York, New York, NY. https://doi.org/10.1007/0-387-30742-7

Download references

Funding

This research was supported by a National Science Foundation grant (DEB 1556753) awarded to M.S.S., and a United States Department of Agriculture Postdoctoral Fellowship (NIFA 1023307) awarded to S.G.M.

Author information

Authors and Affiliations

Authors

Contributions

Steven G. McBride, Michael S. Strickland, and John E. Barrett contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Steven G. McBride, Ernest D. Osburn, Jane M. Lucas Taylor Brown, and Julia S. Simpson. The first draft of the manuscript was written by Steven G. McBride and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Steven G. McBride.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, S.G., Osburn, E.D., Lucas, J.M. et al. Volatile and Dissolved Organic Carbon Sources Have Distinct Effects on Microbial Activity, Nitrogen Content, and Bacterial Communities in Soil. Microb Ecol 85, 659–668 (2023). https://doi.org/10.1007/s00248-022-01967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01967-0

Keywords

Navigation