Skip to main content

Advertisement

Log in

Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations?

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Two major groups of plant secondary compounds, phenolic compounds and terpenes, may according to current evidence mediate changes in soil C and N cycling, but their exact role and importance in boreal forest soils are largely unknown. In this review we discuss the occurrence of these compounds in forest plants and soils, the great challenges faced when their concentrations are measured, their possible effects in regulating soil C and N transformations and finally, we attempt to evaluate their role in connection with certain forest management practices. In laboratory experiments, volatile monoterpenes, in the concentrations found in the coniferous soil atmosphere, have been shown to inhibit net nitrogen mineralization and nitrification; they probably provide a C source to part of the soil microbial population but are toxic to another part. However, there is a large gap in our knowledge of the effects of higher terpenes on soil processes. According to results from laboratory experiments, an important group of phenolic compounds, condensed tannins, may also affect microbial processes related to soil C and N cycling; one mechanism is binding of proteins and certain other organic N-containing compounds. Field studies revealed interesting correlations between the occurrence of terpenes or phenolic compounds and C or net N mineralization in forest soils; in some cases these correlations point in the same direction as do the results from laboratory experiments, but not always. Different forest management practices may result in changes in both the quantity and quality of terpenes and phenolic compounds entering the soil. Possible effects of tree species composition, clear-cutting and removal of logging residue for bioenergy on plant secondary compound composition in soil are discussed in relation to changes observed in soil N transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamczyk B, Godlewski M, Zimny J, Zimny A (2008a) Wheat (Triticum aestivum) seedlings secrete proteases from roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biol 10:718–724

    PubMed  CAS  Google Scholar 

  • Adamczyk B, Kitunen V, Smolander A (2008b) Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol Fertil Soils 45:55–64

    CAS  Google Scholar 

  • Adamczyk B, Godlewski M, Smolander A, Kitunen V (2009a) Degradation of proteins by enzymes exuded by Allium porrum roots—a potential important plant strategy for acquiring organic nitrogen. Plant Physiol Biochem 47:919–925

    PubMed  CAS  Google Scholar 

  • Adamczyk B, Kitunen V, Smolander A (2009b) Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce. Soil Biol Biochem 41:2085–2093

    CAS  Google Scholar 

  • Adamczyk B, Smolander A, Kitunen V, Godlewski M (2010) Proteins as nitrogen source for plants. A short story about exudation of proteases by plant roots. Plant Signal Behav 5:1–3

    Google Scholar 

  • Adamczyk B, Adamczyk S, Smolander A, Kitunen V (2011a) Tannic acid and condensed tannins from Norway spruce can precipitate various organic nitrogen compounds. Soil Biol Biochem 43:628–637

    CAS  Google Scholar 

  • Adamczyk S, Adamczyk B, Kitunen V, Smolander A (2011b) Influence of diterpenes (colophony and abietic acid) and a triterpene (beta-sitosterol) on net N mineralization, net nitrification, soil respiration, and microbial biomass in birch soil. Biol Fertil Soils, in press. doi:10.1007/s00374-010-0529-x

  • Aderiye BI, Ogundana SK, Adesanya SA, Roberts MF (1989) The effects of β-sitosterol on spore germination and germ-tube elongation of Aspergillus niger and Botryodiplodia theobromae. Int J Food Microbiol 8:73–78

    PubMed  CAS  Google Scholar 

  • Amaral JA, Knowles R (1998) Inhibition of methane consumption in forest soils by monoterpenes. J Chem Ecol 24:723–734

    CAS  Google Scholar 

  • Amaral JA, Ekins A, Richards SR, Knowles R (1998) Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Appl Environ Microbiol 64:520–525

    PubMed  CAS  Google Scholar 

  • An J-H, Dultz S (2007) Adsorption of tannic acid on chitosan-montmorillonite as a function of pH surface charge properties. Appl Clay Sci 36:256–264

    CAS  Google Scholar 

  • Appel HM, Govenor HL, D’Ascenzo M, Siska E, Schultz JC (2001) Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27:761–778

    PubMed  CAS  Google Scholar 

  • Asensio D, Owen SM, Llusia J, Penuelas J (2008) The distribution of volatile isoprenoids in the soil organic horizons around Pinus halepensis trees. Soil Biol Biochem 40:2937–2947

    CAS  Google Scholar 

  • Back EL, Ekman R (2000) Definitions of wood resin and its components. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp vii–xi

    Google Scholar 

  • Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659

    Google Scholar 

  • Baldwin IT, Olson RK, Reiners WA (1983) Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol Biochem 15:419–423

    CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20:793–800

    CAS  Google Scholar 

  • Box JD (1981) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Google Scholar 

  • Bradley RL, Titus BD, Preston CP (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol Biochem 32:1227–1240

    CAS  Google Scholar 

  • Bremner JM, McCarty GW (1988) Effects of terpenoids on nitrification in soil. Soil Sci Soc Am J 52:1630–1633

    CAS  Google Scholar 

  • Bremner JM, McCarty GW (1996) Inhibition of nitrification in soil by allelochemicals derived from plants and plant residues. Soil Biochem 8:181–218

    Google Scholar 

  • Chang M-Y, Juang R-S (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and active clay. J Colloid Interface Sci 278:18–25

    PubMed  CAS  Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos 99:166–172

    CAS  Google Scholar 

  • Dahlgren RA, Driscoll CT (1994) The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Plant Soil 158:239–262

    CAS  Google Scholar 

  • De Boer W, Kester RA (1996) Variability of nitrification potentials in patches of undergrowth vegetation in primary Scots pine stands. For Ecol Manage 86:97–103

    Google Scholar 

  • Dev S (1989) Terpenoids. In: Rowe JW (ed) Natural products of woody plants II: chemicals extraneous to lignocellusic cell wall. Springer, Berlin, pp 691–807

    Google Scholar 

  • Dijkstra EF, Boon JJ, Van Mourik JM (1998) Analytical pyrolysis of a soil profile under Scots pine. Eur J Soil Sci 49:295–304

    Google Scholar 

  • Ekman R, Holmbom B (2000) The chemistry of wood resin. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp 37–76

    Google Scholar 

  • Fierer N, Schimel JP, Gates RG, Zou J (2001) The influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol Biochem 33:1827–1839

    CAS  Google Scholar 

  • Gallet C, Lebreton P (1995) Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol Biochem 27:157–165

    CAS  Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kättener T, Knicker H, Nilsson I, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011). Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717

    Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    PubMed  CAS  Google Scholar 

  • Gil F, De la Iglesia R, Mendoza L, Gonzales B, Wilkens M (2006) Soil bacteria are differentially affected by the resin of the medicinal plant Pseudognaphalium vira vira and its main component kaurenoic acid. Microb Ecol 52:10–18

    PubMed  CAS  Google Scholar 

  • Grayston S, Prescott C (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    CAS  Google Scholar 

  • Gundale MJ, Sverker J, Albrectsen BR, Nilsson M-C, Wardle DA (2010) Variation in protein complexation capacity among and within six plant species across a boreal forest chronosequence. Plant Ecol 211:253–266

    Google Scholar 

  • Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. J Chem Ecol 13:437–449

    CAS  Google Scholar 

  • Hagerman AE, Butler LG (1978) Protein precipitation method for quantitative determination of tannins. J Agr Food Chem 26:809–812

    CAS  Google Scholar 

  • Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–4497

    PubMed  CAS  Google Scholar 

  • Hagerman AE, Robbins CT (1987) Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. J Chem Ecol 13:1243–1259

    CAS  Google Scholar 

  • Hagerman AE, Rice ME, Ritchard NT (1998) Mechanisms of protein precipitation for two tannins, pentagallyol glucose and epicatechin16 (4 → 8) catechin (procyanidin). J Agric Food Chem 46:2590–2595

    CAS  Google Scholar 

  • Halvorson JJ, Gonzales JM (2008) Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein. Soil Biol Biochem 40:186–197

    CAS  Google Scholar 

  • Halvorson JJ, Gonzales JM, Hagerman AE, Smith JL (2009) Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol Biochem 41:2002–2010

    CAS  Google Scholar 

  • Handayanto E, Giller KE, Cadisch G (1997) Regulating N release from legume tree prunings by mixing residues of different quality. Soil Biol Biochem 29:1417–1426

    CAS  Google Scholar 

  • Harborne JB (1997) Role of phenolic secondary metabolites in plants and their degradation in nature. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, pp 67–74

  • Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002) Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J Agr Food Chem 50:1785–1790

    CAS  Google Scholar 

  • Haslam E (1989) Plant polyphenols—vegetable tannins revisited. In: Phillipson JD, Ayres DC, Baxter H (eds) Chemistry and pharmacology of natural products. Cambridge University Press, Cambridge, p 230

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrrestrial ecosystem nutrient cycling. TREE 15:238–243

    PubMed  Google Scholar 

  • Hernes PJ, Hedges JI (2004) Tannin signatures of barks, needles, leaves, cones, and wood at the molecular level. Geochim Cosmochim Acta 68:1293–1307

    CAS  Google Scholar 

  • Howard PJA, Howard DM (1993) Ammonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil types. Soil Biol Biochem 25:1249–1256

    Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    CAS  Google Scholar 

  • Jacobson S, Kukkola M, Mälkönen E, Tveite B, Möller G (2000) Growth response of coniferous stands to whole-tree harvesting in early thinnings. Scand J For Res 11:50–59

    Google Scholar 

  • Joanisse GD, Bradley RL, Preston CM, Munson AD (2007) Soil enzyme inhibition by condensed tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytol 175:535–546

    PubMed  CAS  Google Scholar 

  • Joanisse GD, Bradley RL, Preston CM (2008) Do late-successional tannin-rich plant communities occurring on highly acidic soils increase the DON/DIN ratio? Biol Fertil Soils 44:903–907

    CAS  Google Scholar 

  • Juntheikki M-R (1999) Chemoecological role of tannins in woody plants. Dissertation. University of Joensuu, Finland

  • Juntheikki M-R, Julkunen-Tiitto R (2000) Inhibition of β-glucosidase and esterase by tannins from Betula, Salix, and Pinus species. J Chem Ecol 26:1151–1165

    CAS  Google Scholar 

  • Kainulainen P, Holopainen JK (2002) Concentrations of secondary metabolites in Scots pine needles at different stages of decomposition. Soil Biol Biochem 34:37–42

    CAS  Google Scholar 

  • Kalina M, Pease DC (1977) The preservation of ultrastructure in saturated phosphatidyl colines by tannic acid in model systems and type II pneumocytes. J Cell Biol 74:726–741

    PubMed  CAS  Google Scholar 

  • Kanerva S, Smolander A (2007) Microbial activities in forest floor layers under silver birch, Norway spruce and Scots pine. Soil Biol Biochem 39:1459–1467

    CAS  Google Scholar 

  • Kanerva S, Smolander A (2008) How do coniferous needle tannins influence C and N transformations in birch soil. Eur J Soil Biol 44:1–9

    CAS  Google Scholar 

  • Kanerva S, Kitunen V, Kiikkilä O, Loponen J, Smolander A (2006) Response of soil C and N transformations to tannin fractions extracted from Norway spruce and Scots pine needles. Soil Biol Biochem 38:1364–1374

    CAS  Google Scholar 

  • Kanerva S, Kitunen V, Loponen J, Smolander A (2008) Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol Fertil Soils 44:547–556

    CAS  Google Scholar 

  • Ketola RA, Kiuru JT, Kotiaho T, Kitunen V, Smolander A (2010) Feasibility of membrane inlet mass spectrometry for on-site screening of volatile monoterpenes and monoterpene alcohols in forest soil atmosphere. Boreal Environ Res 16:36–46

    Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2005) Degradability of dissolved organic carbon and nitrogen in relation to tree species. FEMS Microbiol Ecol 53:33–40

    PubMed  Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2006) Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biol Biochem 38:737–746

    Google Scholar 

  • Knicker H (2011) Soil organic N—an under-rated player for C sequestration in soils? Soil Biol Biochem 43:1118–1129

    CAS  Google Scholar 

  • Kraal P, Nierop KGJ, Kaal J, Tietema A (2009) Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins. Soil Biol Biochem 41:2318–2327

    CAS  Google Scholar 

  • Kranabetter JM, Banner A (2000) Selected biological and chemical properties of forest floors across bedrock types on the north coast of British Columbia. Can J For Res 30:971–981

    Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66

    CAS  Google Scholar 

  • Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WR, Preston CM (2004a) Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol Biochem 36:309–321

    CAS  Google Scholar 

  • Kraus TEC, Zasoski RJ, Dahlgren RA (2004b) Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant Soil 262:95–109

    CAS  Google Scholar 

  • Kumar R, Horigome T (1986) Fractionation, characterization, and protein-precipitating capacity of the condensed tannins from Robinia pseudo acacia L. leaves. J Agr Food Chem 34:487–489

    CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth System. Tansley Review New Phytol 183:27–51

    CAS  Google Scholar 

  • Leff J, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    CAS  Google Scholar 

  • Lenoir L, Bengtson J, Persson T (1999) Effects of coniferous resin on fungal biomass and mineralization processes in wood ant nest materials. Biol Fertil Soils 30:251–257

    Google Scholar 

  • Lin C, Owen SM, Peneelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960

    CAS  Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Google Scholar 

  • Lodhi MAK, Killingbeck KT (1980) Allelopathic inhibition of nitrification and nitrifying bacteria in a Ponderosa pine (Pinus ponderosa Dougl) community. Amer J Bot 67:1423–1429

    CAS  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Ferger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792

    CAS  Google Scholar 

  • Ludley KE, Robinson CH, Jickells S, Chamberlain PM, Whitaker J (2008) Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soil to selected monoterpenes. Soil Biol Biochem 40:669–678

    CAS  Google Scholar 

  • Ludley KE, Jickells SM, Chamberlain PM, Whitaker J, Robinson CH (2009a) Distribution of monoterpenes between organic resources in upper soil horizons under monocultures of Picea abies, Picea sithensis and Pinus sylvestris. Soil Biol Biochem 41:1050–1059

    CAS  Google Scholar 

  • Ludley KE, Robinson CH, Jickells S, Chamberlain PM, Whitaker J (2009b) Potential for monoterpenes to affect ectomycorrhizal and saprophytic fungal activity in coniferous forest is revealed by a novel experimental system. Soil Biol Biochem 41:117–124

    CAS  Google Scholar 

  • Madricht MD, Jordan LM, Lindroth RL (2007) Interactive effects of condensed tannin and cellulose additions on soil respiration. Can J For Res 37:2063–2067

    Google Scholar 

  • Maie N, Behrens A, Knicker H, Kögel-Knabner I (2003) Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leaves. Soil Biol Biochem 35:577–589

    CAS  Google Scholar 

  • Manninen A-M, Utriainen J, Holopainen T, Kainulainen P (2002) Terpenoids in the wood of Scots pine and Norway spruce seedlings exposed to ozone at different nitrogen availability. Can J For Res 32:2140–2145

    CAS  Google Scholar 

  • Martikainen PJ (1996) Microbial processes in boreal forest soils as affected by forest management practices and atmospheric stress. Soil Biochem 9:195–232

    Google Scholar 

  • Maurer DM, Kolb S, Haumaier L, Borken L (2008) Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biol Biochem 40:3014–3020

    CAS  Google Scholar 

  • McAllister TA, Martinez T, Bae DH, Muir AD, Yanke LJ, Jones GA (2005) Characterization of condensed tannins purified from legume forages: chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. J Chem Ecol 31:2049–2068

    PubMed  CAS  Google Scholar 

  • McCarty GW, Bremner JM (1986) Effects of phenolic compounds on nitrification in soil. Soil Sci Soc Am 50:920–923

    CAS  Google Scholar 

  • Melin E, Krupa S (1971) Studies on ectomycorrhizae of pine II. Growth inhibition of mycorrhizal fungi by volatile organic constituents of Pinus silvestris (Scots pine) roots. Physiol Plant 25:337–340

    CAS  Google Scholar 

  • Menyailo OV, Hungate B, Zech W (2002) The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Tree species and soil microbial activities. Plant Soil 242:183–196

    CAS  Google Scholar 

  • Merilä P, Smolander A, Strömmer R (2002) Soil nitrogen transformations along a primary succession transect on the land-uplift coast in western Finland. Soil Biol Biochem 34:373–385

    Google Scholar 

  • Misra G, Pavlostathis SG, Perdue EM, Araujo R (1996) Aerobic biodegradation of selected monoterpenes. Appl Microbiol Biotechnol 45:831–838

    PubMed  CAS  Google Scholar 

  • Mole S, Waterman PG (1987) A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia 72:148–156

    Google Scholar 

  • Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolyzable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492

    CAS  Google Scholar 

  • Nannipieri P, Eldor P (2009) The chemical and biological characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    CAS  Google Scholar 

  • Napierała-Filipiak A, Werner A, Mardarowicz M, Gawdizik J (2002) Concentrations of terpenes in mycorrhizal roots of Scots pine (Pinus sylvestris L.) seedlings grown in vitro. Acta Physiol Plant 24:137–143

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. Tansley Review New Phytol 182:31–48

    Google Scholar 

  • Nierop KGJ, Verstraten JM (2006) Fate of tannins in Corsican pine litter. J Chem Ecol 32:2709–2719

    PubMed  CAS  Google Scholar 

  • Nierop KGJ, Preston CM, Kaal J (2005) Thermally assisted hydrolysis and methylation of purified tannins from plants. Anal Chem 77:5604–5614

    PubMed  CAS  Google Scholar 

  • Nierop KGJ, Preston CM, Verstraten JM (2006a) Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biol Biochem 38:2794–2802

    CAS  Google Scholar 

  • Nierop KGJ, Verstraten JM, Tietema A, Westerveld JW, Wartenbergh PE (2006b) Short- and long-term tannin induced carbon, nitrogen and phosphorus dynamics in Corsican pine litter. Biogeochemistry 79:275–296

    CAS  Google Scholar 

  • Norris CE, Preston CM, Hogg KE, Titus BD (2011) The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays. J Chem Ecol 37:311–319

    PubMed  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, Zengshou Y (1995a) Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171:255–262

    CAS  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Voigt KA (1995b) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in Northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    CAS  Google Scholar 

  • Obst JR (1998) Special (secondary) metabolites from wood. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, pp 151–165

  • Paavolainen L, Smolander A (1998) Nitrification and denitrification in soil from a clear-cut Norway spruce (Picea abies) stand. Soil Biol Biochem 30:775–778

    CAS  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification by monoterpenes. Plant Soil 205:147–154

    CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    PubMed  CAS  Google Scholar 

  • Persson J, Näsholm T (2001) Amino acid uptake: a widespread ability among boreal forest plants. Ecol Lett 4:434–438

    Google Scholar 

  • Persson T, Wirén A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soil. Plant Soil 168–169:55–65

    Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg M, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257

    PubMed  Google Scholar 

  • Piatek KB, Lee Allen H (1999) Nitrogen mineralization in a pine plantation fifteen years after harvesting and site preparation. Soil Sci Soc Am J 63:990–998

    CAS  Google Scholar 

  • Popova M, Trusheva B, Gyosheva M, Tsvetkova I, Bankova V (2009) Antibacterial triterpenes from the threatened wood-decay fungus Fomitopsis rosea. Fitoterapia 80:263–266

    PubMed  CAS  Google Scholar 

  • Prescott CE, Vesterdal L (2005) Effects of British Columbia tree species on forest floor chemistry. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 17–29

    Google Scholar 

  • Preston C, Bhatti J, Flanagan L, Norris C (2006) Stocks, chemistry and sensitivity to climate change of dead organic matter along the Canadian Boreal Forest Transect Case Study. Clim Change 74:223–251

    CAS  Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at originally similar forest sites. Soil Biol Biochem 31:965–977

    CAS  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    CAS  Google Scholar 

  • Rice EL, Pancholy SK (1974) Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Am J Bot 61:1095–1103

    CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Schimel JP, Van Cleve KV, Cates RG, Thomas TP, Reichardt PB (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can J Bot 74:84–90

    CAS  Google Scholar 

  • Schimel JP, Cates RG, Ruess R (1998) The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234

    CAS  Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    CAS  Google Scholar 

  • Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    CAS  Google Scholar 

  • Senwo ZN, Tabatabai MA (1998) Amino acid composition of soil organic matter. Biol Fertil Soils 26:235–242

    CAS  Google Scholar 

  • Smania EFA, Monache FD, Smania A, Yunes RA, Cuneo RS (2003) Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 74:375–377

    PubMed  CAS  Google Scholar 

  • Smolander A, Kitunen V (2011) Comparison of tree species effects on microbial C and N transformations and dissolved organic matter properties in boreal forest floors. Appl Soil Ecol, in press. doi:10.1016/j.apsoil.2011.05.002

  • Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem 34:651–660

    CAS  Google Scholar 

  • Smolander A, Priha O, Paavolainen L, Steer J, Mälkönen E (1998) Nitrogen and carbon transformations before and after clear-cutting in repeatedly N-fertilized and limed forest soil. Soil Biol Biochem 30:477–490

    CAS  Google Scholar 

  • Smolander A, Kukkola M, Helmisaari H-S, Mäkipää R, Mälkönen E (2000). Functioning of forest ecosystems under nitrogen loading. In: Mälkönen E (ed) Forest condition in a changing environment—the Finnish case. Forestry Sciences, vol 65. Kluwer Academic Publishers, pp 229–247

  • Smolander A, Kitunen V, Mälkönen E (2001) Dissolved soil organic nitrogen and carbon in a Norway spruce stand and an adjacent clear-cut. Biol Fertil Soils 33:190–196

    CAS  Google Scholar 

  • Smolander A, Loponen J, Suominen K, Kitunen V (2005) Organic matter characteristics and C and N transformations in the humus layer under two tree species, Betula pendula and Picea abies. Soil Biol Biochem 37:1309–1318

    CAS  Google Scholar 

  • Smolander A, Ketola R, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil microair under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442

    CAS  Google Scholar 

  • Smolander A, Levula T, Kitunen V (2008) Response of litter decomposition and soil C and N transformations in a Norway spruce thinning stand to removal of logging residues. For Ecol Manage 256:1080–1086

    Google Scholar 

  • Smolander A, Kitunen V, Tamminen P, Kukkola M (2010a) Removal of logging residue in Norway spruce thinning stands: long-term changes in organic layer properties. Soil Biol Biochem 42:1122–1228

    Google Scholar 

  • Smolander A, Kitunen V, Tamminen P, Kukkola M (2010b) Response of soil organic layer characteristics to different amounts of logging residue in a Scots pine thinning stand. Geophysical Research Abstracts 12, EGU2010-3222

    Google Scholar 

  • Stahl PD, Parkin TB (1996) Microbial production of volatile organic compounds in soil microcosms. Soil Sci Soc Am J 60:821–828

    CAS  Google Scholar 

  • Stark S, Julkunen-Tiitto R, Kumpula J (2007) Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects of plant defense, litter decomposition, and soil nutrient cycling. Oecology 151:486–498

    Google Scholar 

  • Strömvall A-M, Peterson G (2000) Volatile terpenes emitted to air. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI, Atlanta, pp 77–99

    Google Scholar 

  • Suominen K, Kitunen V, Smolander A (2003) Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur J Soil Sci 54:287–293

    CAS  Google Scholar 

  • Talbot JM, Finzi AC (2008) Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Oecologia 155:583–592

    PubMed  Google Scholar 

  • Tamm CO, Holmen B, Popovic B, Wiklander G (1974) Leaching of plant nutrients from soils as a consequence of forest operations. Ambio 3:211–221

    CAS  Google Scholar 

  • Tamminen P (2000) Soil factors. In: Mälkönen E. (ed) Forest condition in a changing environment—the Finnish case. Forestry Sciences, vol. 65. Kluwer Academic Publishers, pp 72–86

  • Thoss V, Shevtsova A, Nilsson M-C (2004) Environmental manipulation treatment effects on the reactivity of water-soluble phenolics in a subalpine tundra ecosystem. Plant and Soil 259:355–356

    CAS  Google Scholar 

  • Uusitalo M, Kitunen V, Smolander A (2008) Response of C and N transformations in birch soil to coniferous resin volatiles. Soil Biol Biochem 40:2643–2649

    CAS  Google Scholar 

  • Valachovic YS, Caldwell BA, Cromack K, Griffiths RP (2004) Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs. Can J For Res 34:2131–2147

    CAS  Google Scholar 

  • Van Roon A, Parsons JR, Krap L, Govers HAJ (2005) Fate and transport of monoterpenes through soils. Part II. Calculation of the effect of soil temperature, water saturation and organic carbon content. Chemosphere 61:129–138

    PubMed  Google Scholar 

  • Verkaik E, Jongkind AE, Berendse F (2006) Short-term and long-term effects of tannins on nitrogen mineralization and litter decomposition in kauri (Agathis australis (D. Don) Lindl) forests. Plant Soil 287:337–345

    CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochem 13:87–115

    Google Scholar 

  • Vitousek PM, Matson PA (1984) Mechanisms of nitrogen retention in forest ecosystems: a field experiment. Science 225:51–52

    PubMed  CAS  Google Scholar 

  • Ward BB, Courtney KJ, Langenheim JH (1997) Inhibition of Nitromonas europaea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole-cell studies. J Chem Ecol 23:2583–2598

    CAS  Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. In: Lawton JH, Likens GE (eds) Methods in ecology. Blackwell Scientific Publications, Oxford, pp 92–95

    Google Scholar 

  • Weidenhamer JD, Macias FA, Fischer NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1779–1807

    Google Scholar 

  • Werner A, Napierała-Filipiak A, Mardarowich M, Gawdzik J (2004) The effects of heavy metals, contents of nutrients and inoculation with mycorrhizal fungi on the level of terpenoids in roots of Pinus sylvestris seedlings. Acta Physiol Plantarum 26:187–196

    CAS  Google Scholar 

  • White CS (1986) Volatile and water-soluble inhibitors of nitrogen mineralisation and nitrification in a ponderosa pine ecosystem. Biol Fertil Soils 2:97–104

    Google Scholar 

  • White CS (1988) Nitrification inhibition by monoterpenoids: theoretical mode of action based on molecular structures. Ecology 69:1631–1633

    CAS  Google Scholar 

  • White CS (1991) The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Results from laboratory bioassays and field studies. Biogeochem 12:43–68

    CAS  Google Scholar 

  • White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406

    CAS  Google Scholar 

  • Wilt FM, Miller GC, Everett RL (1988) Monoterpene concentrations in litter and soil of single-leaf pinyon woodlands of the Western Great Basin. Great Basin Nat 48:228–231

    Google Scholar 

  • Wilt FM, Miller GC, Everett RL, Hackett M (1993a) Monoterpene concentrations in fresh, senescent, and decaying foliage of single-leaf pinyon (Pinus monofylla Torr. & Frem.: Pinaceae) from the Western Great Basin. J Chem Ecol 19:185–194

    CAS  Google Scholar 

  • Wilt FM, Miller GC, Everett RL (1993b) Measurement of monoterpene hydrocarbon levels in vapor phase surrounding single-leaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) understory litter. J Chem Ecol 19:1417–1428

    CAS  Google Scholar 

  • Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using protein-tannin complex as N source by red pine (Pinus resinosa). New Phytol 159:131–139

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Oili Kiikkilä and Prof. Heljä-Sisko Helmisaari for thoughtful comments, Dr. Joann von Weissenberg for checking the English language of this paper, to Anne Siika for making the figures and to previous members of the research group, particularly Dr. Laura Höijer and Dr. Outi Priha, for their contribution. The Finnish Forest Research Institute, Academy of Finland and Maj and Tor Nessling Foundation have funded several studies discussed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aino Smolander.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolander, A., Kanerva, S., Adamczyk, B. et al. Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations?. Plant Soil 350, 1–26 (2012). https://doi.org/10.1007/s11104-011-0895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0895-7

Keywords

Navigation