Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G et al (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546
PubMed
PubMed Central
Article
Google Scholar
Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R (2020) The planktonic protist interactome: where do we stand after a century of research? ISME J 14:544–559
PubMed
Article
Google Scholar
Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S et al (2015) Determinants of community structure in the global plankton interactome. Science 348:1262073
PubMed
Article
CAS
Google Scholar
Falkowski P (2012) Ocean Science: The power of plankton. Nature 483:17–20
Article
CAS
Google Scholar
Reynolds CS (2006) Mortality and loss processes in phytoplankton. In: Reynolds CS (ed) The Ecology of Phytoplankton. Cambridge University Press, Cambridge, pp 239–301
Chapter
Google Scholar
Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M et al (2017) Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 19:3802–3822
PubMed
Article
Google Scholar
Sime-Ngando T (2012) Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol 3:1–13
Article
Google Scholar
Canter HM, Lund JWG (1951) Studies on plankton parasites: III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot 15:359–371
Google Scholar
van Donk E, Ringelberg J (1983) The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshwat Biol 13:241–251
Article
Google Scholar
Gsell AS, De Senerpont Domis LN, Verhoeven KJF, Van Donk E, Ibelings BW (2013) Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J 7:2057–2059
PubMed
PubMed Central
Article
Google Scholar
Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ, Grossart H-P, Dekas AE (2021) Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. USA 118:e2102225118
CAS
PubMed
PubMed Central
Article
Google Scholar
Kagami M, Miki T, Takimoto G (2014) Mycoloop: Chytrids in aquatic food webs. Front Microbiol 5:166
PubMed
PubMed Central
Article
Google Scholar
Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN (2011) Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwat Biol 56:754–766
Article
Google Scholar
Gsell AS, De Senerpont Domis LN, Naus-Wiezer SMH, Helmsing NR, Van Donk E, Ibelings BW (2013) Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshwat Biol 58:523–537
Article
Google Scholar
Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, Guillou L, van Ogtrop FF (2015) Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev 29:20–33
Article
Google Scholar
Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:1–8
Article
Google Scholar
Shurin JB, Abbott RL, Deal MS, Kwan GT, Litchman E, McBride RC, Mandal S, Smith VH (2013) Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol Lett 16:1393–1404
PubMed
Article
Google Scholar
Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17:339–354
CAS
PubMed
Article
Google Scholar
Laundon, D., Cunliffe, M. (2021). A call for a better understanding of aquatic chytrid biology. Frontiers in Fungal Biology 2.
Canter HM, Lund JWG (1948) Studies on plankton parasites: I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytol 47:238–261
Article
Google Scholar
Ortiz-Álvarez R, Triadó-Margarit X, Camarero L, Casamayor EO, Catalan J (2018) High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci Rep. 8:4457
PubMed
PubMed Central
Article
CAS
Google Scholar
Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128
CAS
PubMed
PubMed Central
Article
Google Scholar
Gutiérrez MH, Garcés DV, Pantoja S, González RR, Quiñones RA (2017) Environmental fungal diversity in the upwelling ecosystem off central Chile and potential contribution to enzymatic hydrolysis of macromolecules in coastal ecotones. Fungal Ecol 29:90–95
Article
Google Scholar
Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421
PubMed
PubMed Central
Article
CAS
Google Scholar
Rojas-Jimenez K, Grossart H-P, Cordes E, Cortés J (2020) Fungal communities in sediments along a depth gradient in the Eastern Tropical Pacific. Front Microbiol 11:1–9
Article
Google Scholar
Rojas-Jimenez K, Wurzbacher C, Bourne EC, Chiuchiolo A, Priscu JC, Grossart HP (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys. Antarctica. Sci Rep. 7:15348
PubMed
Article
CAS
Google Scholar
Hassett BT, Ducluzeau ALL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ Microbiol 19:475–484
CAS
PubMed
Article
Google Scholar
Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6:30120
CAS
PubMed
PubMed Central
Article
Google Scholar
Gao Z, Johnson ZI, Wang G (2009) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120
PubMed
Article
Google Scholar
Kilias ES, Junges L, Šupraha L, Leonard G, Metfies K, Richards TA (2020) Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Communications Biology 3:183
CAS
PubMed
PubMed Central
Article
Google Scholar
Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009
CAS
PubMed
Article
Google Scholar
Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260
Article
Google Scholar
Maier MA, Peterson TD (2016) Enumeration of parasitic chytrid zoospores in the Columbia River via quantitative PCR. Appl Environ Microbiol 82:3857
CAS
PubMed
PubMed Central
Article
Google Scholar
Wurzbacher C, Grossart HP (2012) Improved detection and identification of aquatic fungi and chitin in aquatic environments. Mycologia 104:1267–1271
CAS
PubMed
Article
Google Scholar
Jobard M, Rasconi S, Sime-Ngando T (2010) Fluorescence in situ hybridization of uncultured zoosporic fungi: Testing with clone-FISH and application to freshwater samples using CARD-FISH. J Microbiol Methods 83:236–243
CAS
PubMed
Article
Google Scholar
Hassett BT, Borrego EJ, Vonnahme TR, Rämä T, Kolomiets MV, Gradinger R (2019) Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J 13:1484–1496
CAS
PubMed
PubMed Central
Article
Google Scholar
Scholz B, Küpper FC, Vyverman W, Karsten U (2014) Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms - a methodological comparison. J Phycol 50:1009–1019
PubMed
Article
Google Scholar
Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545
CAS
PubMed
PubMed Central
Article
Google Scholar
Mueller U, Von Sengbusch P (1983) Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Archiv Hydrobiologie 97:471–485
Google Scholar
Laundon D, Chrismas N, Wheeler G, Cunliffe M (2020) Chytrid rhizoid morphogenesis resembles hyphal development in multicellular fungi and is adaptive to resource availability. Proc R Soc B Biol Sci 287:20200433
CAS
Article
Google Scholar
Richards TA, Leonard G, Mahé F, Del Campo J, Romac S et al (2015) Molecular diversity and distribution of marine fungi across 130 european environmental samples. Proc R Soc B Biol Sci 282:20152243
Article
CAS
Google Scholar
Pomroy AJ (1984) Direct counting of bacteria preserved with lugol iodine solution. Appl Environ Microbiol 47:1191–1192
CAS
PubMed
Article
Google Scholar
Seto K, Van den Wyngaert S, Degawa Y, Kagami M (2020) Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst Evol 5:17–38
CAS
PubMed
Article
Google Scholar
Van den Wyngaert S, Seto K, Rojas-Jimenez K, Kagami M, Grossart HP (2017) A new parasitic chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromycetaceae fam. Nov.), infecting the freshwater desmid Staurastrum sp. Protist 168:392–407
PubMed
Article
Google Scholar
Van den Wyngaert S, Rojas-Jimenez K, Seto K, Kagami M, Grossart HP (2018) Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J Eukaryot Microbiol 65:870–881
PubMed
Article
CAS
Google Scholar
Doggett MS, Porter D (1996) Sexual reproduction in the fungal parasite, Zygorhizidium planktonicum. Mycologia 88:720–732
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675
CAS
PubMed
PubMed Central
Article
Google Scholar
Dunker S (2019) Hidden secrets behind dots: Improved phytoplankton taxonomic resolution using high-throughput imaging flow cytometry. Cytometry A 95:854–868
PubMed
Article
Google Scholar
Dunker S (2020) Imaging flow cytometry for phylogenetic and morphologically-based functional group clustering of a natural phytoplankton community over 1 year in an urban pond. Cytometry A 97:727–736
CAS
PubMed
Article
Google Scholar
Lefèvre E, Roussel B, Amblard C, Sime-Ngando T (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLOS ONE 3:e2324
PubMed
PubMed Central
Article
CAS
Google Scholar
Kagami M, Amano Y, Ishii N (2012) Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba. Japan Microb Ecol 63:358–368
PubMed
Article
Google Scholar
Rojas-Jimenez K, Rieck A, Wurzbacher C, Jürgens K, Labrenz M, Grossart H-P (2019) A salinity threshold separating fungal communities in the Baltic Sea. Front Microbiol 10:1–9
Article
Google Scholar
Wurzbacher C, Warthmann N, Bourne E, Attermeyer K, Allgaier M et al (2016) High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 16:17–44
Article
Google Scholar
Canter HM, Lund JWG (1969) The parasitism of planktonic desmids by fungi. Österreichische botanische Zeitschrift 116:351–377
Article
Google Scholar
Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Research Part I 41:335–357
CAS
Article
Google Scholar
Kiørboe T, Hansen JLS (1993) Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J Plankton Res 15:993–1018
Article
Google Scholar
Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:1–28
Article
Google Scholar
Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333
Article
Google Scholar
Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res Pt I 40:1131–1140
CAS
Article
Google Scholar
Powell MJ (1994) Production and modifications of extracellular structures during development of chytridiomycetes. In: Wetherbee R, Pickett-Heaps JD, Andersen RA (eds) The Protistan Cell Surface. Springer Vienna, Vienna, pp 123–141
Chapter
Google Scholar
Kleinschuster SJ, Baker R (1974) Lectin-detectable differences in carbohydrate-containing surface moieties of macroconidia of Fusarium roseum ‘avenaceum’ and Fusarium solani. Phytopathology 64:394–399
CAS
Article
Google Scholar
Høyer PE, Kirkeby S (1996) The impact of fixatives on the binding of lectins to N-acetyl-glucosamine residues of human syncytiotrophoblast: a quantitative histochemical study. J Histochem Cytochem 44:855–863
PubMed
Article
Google Scholar
Kagami M, Van Donk E, De Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685
Article
Google Scholar
Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:1–13
Article
Google Scholar
Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256
CAS
PubMed
Article
Google Scholar
Meyberg M (1988) Selective staining of fungal hyphae in parasitic and symbiotic plant-fungus associations. Histochemistry 88:197–199
CAS
PubMed
Article
Google Scholar
P. v. Sengbusch, M. Mix, I. Wachholz, E. Manshard, (1982) FITC-labeled lectins and calcofluor white ST as probes for the investigation of the molecular architecture of cell surfaces. Studies on conjugatophycean species Protoplasma 111:38–52
Google Scholar
Costa-de-Oliveira S, Silva AP, Miranda IM, Salvador A, Azevedo MM, Munro CA, Rodrigues AG, Pina-Vaz C (2013) Determination of chitin content in fungal cell wall: An alternative flow cytometric method. Cytometry A 83A:324–328
CAS
Article
Google Scholar
Biancalana F, Germán K, Sofía DM, B. Anabela A., F. Anna, G.-C. John E., P. Dieter, L. Rubén, (2017) Chitin determination on marine seston in a shallow temperate estuary (Argentina). Braz J Oceanogr 65:146–154
Article
Google Scholar
L. Edler, M. Elbrächter (2010) The Utermöhl method for quantitative phytoplankton analysis. In: B. Karlson, C. Cusack, E. Bresnan (ed) Microscopic and molecular methods for quantitative phytoplankton analysis, (Intergovernmental Oceanographic Commission Manuals and Guides UNESCO, Paris) chap. 13–20, pp. 114.
Biancalana F, Kopprio GA, Lara RJ, Alonso C (2017) A protocol for the simultaneous identification of chitin-containing particles and their associated bacteria. Syst Appl Microbiol 40:314–320
CAS
PubMed
Article
Google Scholar
Monheit JE, Cowan DF, Moore DG (1984) Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med 108:616–618
CAS
PubMed
Google Scholar
Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038
CAS
PubMed
PubMed Central
Article
Google Scholar
Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254
CAS
PubMed
Article
Google Scholar
Leshem T, Letcher PM, Powell MJ, Sukenik A (2016) Characterization of a new chytrid species parasitic on the dinoflagellate, Peridinium gatunense. Mycologia 108:731–743
PubMed
Article
Google Scholar
Karpov SA, Reñé A, Vishnyakov AE, Seto K, Alacid E, Paloheimo A, Kagami M, Kremp A, Garcés E (2021) Parasitoid chytridiomycete Ericiomyces syringoforeus gen. et sp. nov. has unique cellular structures to infect the host. Mycol Prog 20:95–109
Article
Google Scholar
Lepelletier F, Karpov SA, Alacid E, Le Panse S, Bigeard E, Garcés E, Jeanthon C, Guillou L (2014) Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165:230–244
PubMed
Article
Google Scholar
Garvetto A, Nézan E, Badis Y, Bilien G, Arce P, Bresnan E, Gachon CMM, Siano R (2018) Novel widespread marine oomycetes parasitising diatoms, including the toxic genus Pseudo-nitzschia: Genetic, morphological, and ecological characterisation. Front Microbiol 9:1–19
Article
Google Scholar
Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469
CAS
PubMed
Article
Google Scholar
Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, Küpper FC, Gleason FH (2016) Zoosporic parasites infecting marine diatoms - A black box that needs to be opened. Fungal Ecol 19:59–76
PubMed
PubMed Central
Article
Google Scholar
M. Peter (2005) Chitin and Chitosan in Fungi. In: A. Steinbüchel (ed) Biopolymers Online, (Wiley‐VCH Verlag GmbH & Co. KGaA, online) chap. Part 6. Polysaccharides.
Badreddine I, Lafitte C, Heux L, Skandalis N, Spanou Z et al (2008) Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces Euteiches. Eukaryot Cell 7:1980–1993
CAS
PubMed
PubMed Central
Article
Google Scholar
Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203
CAS
PubMed
Article
Google Scholar
James TY, Berbee ML (2012) No jacket required – new fungal lineage defies dress code. BioEssays 34:94–102
CAS
PubMed
Article
Google Scholar
Kagami M, Seto K, Nozaki D, Nakamura T, Wakana H, Wurzbacher C (2021) Single dominant diatom can host diverse parasitic fungi with different degree of host specificity. Limnol Oceanogr 66:667–677
Article
Google Scholar
Karpov S, Mamkaeva M, Aleoshin V, Nassonova E, Lilje O, Gleason F (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:1–11
Article
Google Scholar
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23:1548–1553
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P (2018) Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Communications Biology 1:231
CAS
PubMed
PubMed Central
Article
Google Scholar
Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357:73–82
CAS
PubMed
PubMed Central
Article
Google Scholar
Müller U, P. v. Sengbusch, (1983) Interactions of species in an Anabaena flos-aquae association from the Plußsee (East-Holstein, Federal Republic of Germany). Oecologia 58:215–219
PubMed
Article
Google Scholar
Sizemore RK, Caldwell JJ, Kendrick AS (1990) Alternate gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56:2245
CAS
PubMed
PubMed Central
Article
Google Scholar
Gerphagnon M, Latour D, Colombet J, Sime-Ngando T (2013) A double staining method using SYTOX green and calcofluor white for studying fungal parasites of phytoplankton. Appl Environ Microbiol 79:3943–3951
CAS
PubMed
PubMed Central
Article
Google Scholar
Williams OJ, Beckett RE, Maxwell DL (2016) Marine phytoplankton preservation with Lugol’s: a comparison of solutions. J Appl Phycol 28:1705–1712
CAS
Article
Google Scholar
Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K et al (2018) Intelligent Image-Activated Cell Sorting. Cell 175:266-276.e213
CAS
PubMed
Article
Google Scholar