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Abstract
Fungal microparasites (here chytrids) are widely distributed and yet, they are often overlooked in aquatic environments. To 
facilitate the detection of microparasites, we revisited the applicability of two fungal cell wall markers, Calcofluor White 
(CFW) and wheat germ agglutinin (WGA), for the direct visualization of chytrid infections on phytoplankton in laboratory-
maintained isolates and field-sampled communities. Using a comprehensive set of chytrid–phytoplankton model pathosys-
tems, we verified the staining pattern on diverse morphological structures of chytrids via fluorescence microscopy. Empty 
sporangia were stained most effectively, followed by encysted zoospores and im-/mature sporangia, while the staining 
success was more variable for rhizoids, stalks, and resting spores. In a few instances, the staining was unsuccessful (mostly 
with WGA), presumably due to insufficient cell fixation, gelatinous cell coatings, and multilayered cell walls. CFW and 
WGA staining could be done in Utermöhl chambers or on polycarbonate filters, but CFW staining on filters seemed less 
advisable due to high background fluorescence. To visualize chytrids, 1 µg dye  mL−1 was sufficient (but 5 µg  mL−1 are rec-
ommended). Using a dual CFW–WGA staining protocol, we detected multiple, mostly undescribed chytrids in two natural 
systems (freshwater and coastal), while falsely positive or negative stained cells were well detectable. As a proof-of-concept, 
we moreover conducted imaging flow cytometry, as a potential high-throughput technology for quantifying chytrid infec-
tions. Our guidelines and recommendations are expected to facilitate the detection of chytrid epidemics and to unveil their 
ecological and economical imprint in natural and engineered aquatic systems.
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Introduction

Parasitism—as a strong selective pressure in nature [1]—is 
one of the most dominating microbial interactions in plankton 
communities [2, 3]. Yet, microparasites are rarely considered 
in trophic interactions and biogeochemical processes in the 
aquatic environment, partly due to limitations in observing 
them in mixed microbial communities. Phytoplankton, which 
contributes to almost half of the primary production on Earth 
[4], is susceptible to various parasites [5]. For instance, mem-
bers of the fungal division Chytridiomycota, referred to as 
chytrids, infect all major phytoplankton groups [6, 7], thereby 
altering the composition of phytoplankton communities [8–10], 
with cascading effects on microbial interactions and the flow 
of energy through aquatic food webs—a concept referred to as 
the fungal shunt [11] and mycoloop [12]. Moreover, chytrid 
epidemics may suppress the development of phytoplankton 
blooms [8, 13, 14], potentially limiting the spread of harmful 
algae blooms [15] but also causing severe problems for algae 
mass culturing during feedstock or biofuel production [16, 17]. 
Chytrid epidemics thus profoundly affect ecosystem function-
ing with ecological and economic implications [6, 18, 19].

Since the pioneering work on chytrids in British lakes [20], 
chytrids have been primarily studied locally in a few lakes and 
on a limited number of isolates [6], mostly because their small 
and inconspicuous thalli are frequently overlooked or misi-
dentified by the untrained eye when using light microscopy. 
During the last decade, advances in DNA sequencing assays 
have substantially broadened the observed diversity and dis-
tribution of chytrids in aquatic habitats, reaching from high-
altitude lakes [21], coastal regions [22, 23] to the deep-sea 
[24, 25] across various climate zones [7, 26–31]. This recently 
discovered diversity and biogeography, however, remains to 
be complemented with direct observations of chytrid abun-
dances and host identities in most of those habitats.

Chitin-binding dyes, as markers for fungal cell walls, in 
combination with fluorescence microscopy are often used to 
determine infection prevalences, i.e., the proportion of host 
cells that is infected [32]. More recently, quantitative PCR 
(qPCR) [33], a chitin-binding probe [34], and fluorescence 
in situ hybridization (FISH) [35, 36] have been applied to 
detect chytrids. However, these three approaches have cru-
cial limitations: qPCR has only been tested on free-swim-
ming zoospores, so far, but not on host-associated sporangia 
[33], the previously used chitin-binding probe is not com-
mercially available any longer, and FISH represents a rather 
expensive, low-throughput method. The use of chitin-bind-
ing dyes and fluorescence microscopy, therefore, remains the 
simplest and most widely used method to directly visualize 
chytrid–phytoplankton associations. Chitin-binding dyes 
include Calcofluor White (CFW), wheat germ agglutinin 
(WGA), Congo Red, Lactophenol-cotton blue, and Trypan 

Blue [37]. Of those, CFW has been used most frequently 
[38], while WGA is the least toxic one. We thus focused on 
CFW and WGA, which both have been applied on pelagic 
[39] and benthic communities [37]. The fluorescent dye 
CFW binds nonspecifically to beta-1,3 and 1,4-linked poly-
saccharides which include chitin but also cellulose, the latter 
being present in cell walls of some phytoplankton taxa and 
fungi-like organisms, which can obscure chytrid detections 
[39]. The fluorescently-tagged lectin WGA instead binds 
specifically to N-acetylglucosamine, i.e., the monomeric 
unit of the polymer chitin. Nevertheless, despite its specific 
chitin-binding properties, comparatively few studies have 
used WGA for chytrid staining [e.g., 40, 41].

To clarify the applicability of CFW and WGA in chytrid 
staining assays, we conducted a rigorous intercomparison 
of CFW vs. WGA staining on nine isolated pathosystems 
and field-sampled plankton communities. We were able to 
validate the staining of various morphological features of 
isolated chytrids during their life cycle. We further quanti-
fied the effect of different dye concentrations and sample 
storage times on the staining quality and verified the perfor-
mance of CFW and WGA staining in combination with two 
widely used fixatives (Lugol and paraformaldehyde, PFA). 
Moreover, we demonstrate the application of WGA staining 
in combination with imaging flow cytometry as a potential 
set-up for high throughput quantification of chytrid infec-
tions. Finally, we offer guidelines for a CFW–WGA dual 
staining protocol, which we applied on natural plankton 
communities, to improve the detection of chytrid epidemics 
in diverse artificial and natural aquatic ecosystems.

Materials and Methods

Specifications and recipes of all chemical solutions, and 
a step-by-step staining protocol including epifluorescence 
microscopy are detailed in the supplementary information 
(Supplementary Text S1 and S2).

Staining Various Morphological Features of Chytrids 
in Multiple Model Systems

We grew nine taxonomically different host–chytrid pathosys-
tems (Table 1) in batch cultures, as previously described (see 
Supplementary Text S3). Sub-samples of each co-culture 
were preserved with Lugol (alkaline, 10 µL  mL−1) in 2-mL 
tubes and stored at 4 °C in darkness. Prior microscopy, sam-
ples were destained from Lugol by adding sodium thiosul-
fate  (Na2S2O3, final conc. 7.6 mM) [42] and thereafter dual 
stained with CFW and WGA (Fluorescent Brightener 28 
and WGA-Alexa Fluor™ 488 Conjugate) for 15 min in the 
dark (5 µg  mL−1 of each dye). The dual staining was justi-
fied since no competitive staining was observed herein and 
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earlier [39, 41], allowing for a direct comparison of both 
dyes in the same sample. Stained chytrids were evaluated 
in Utermöhl chambers on the same day under an inverted 
fluorescence microscope (Nikon Eclipse Ti2, used through-
out this study and therefore referred to as microscope in the 
following) at 600 × magnification using two fluorescence 
channels (WGA: 482/35 nm excitation/536/40 nm emission, 
CFW: 377/50 excitation/415 LP emission).

The life cycle of chytrids involves various development 
stages and morphological features, which we addressed 
by validating the staining patterns on those multiple fea-
tures (Fig. 1A). Features included (1) encysted zoospores 
(i.e., initially attached zoospores), (2) immature sporangia 
(larger than encysted zoospores but not yet matured, no vis-
ible zoospores), (3) mature sporangia (zoosporangia with 
visible zoospores inside), (4) empty sporangia (cell wall 
remains of the sporangia after zoospore discharge), (5) rest-
ing spores (resting stages with thickened cell walls), (6) 
rhizoids (rhizoidal structures inside the host cell), and (7) 
stalks (extensions of the sporangia to physically attach to 
the host’s cell wall). In addition, we examined encysted, 
immotile, freely suspended zoospores [i.e., not attached 
to any host cell, in contrast to (1)] which were only pre-
sent in the Yamagishiella–Endocoenobium system. Of each 
morphological feature, 25 events (in 15 out of 96 instances 
5–20 events) were evaluated in parallel with both fluores-
cence channels. The staining patterns were qualitatively 
evaluated and assigned to three categories: (1) entirely 
stained, i.e., the entire morphological feature displayed a 

bright, homogeneous fluorescent signal, 2) partly stained, 
i.e., the morphological feature did not display a homogene-
ous fluorescent signal or the fluorescence was weaker com-
pared to other morphological structures of the same species, 
and 3) not stained, if no fluorescent signal was detectable. 
Additionally, we evaluated the staining patterns on live 
cells (no Lugol-preservation) in three selected systems 
(Asterionella–Rhizophydiales, Ulnaria–Zygophlyctis, and 
Staurastrum–Staurastromyces).

Dye Concentrations, Storage Times, and Sample 
Preservation/Preparation Types

Using the Asterionella‒Rhizophydiales #1 co-culture, we 
validated the effect of different dye concentrations and stor-
age times on the enumeration of chytrid and host cells, and 
their emitted fluorescence intensity. Three different CFW 
and WGA concentrations (1, 5, and 25 µg  mL−1, storage 
overnight) and storage times (1 day, 4 weeks, and 6 months, 
dye concentration was 5 µg  mL−1) were tested. Since infec-
tion prevalences are commonly determined by enumerating 
encysted zoospores and sporangia [14], we verified the stain-
ing of those structures, if not indicated differently.

Samples were either preserved with Lugol (alkaline, 10 
µL  mL−1) and inspected in Utermöhl chambers or preserved 
with paraformaldehyde (PFA, final conc. 1.5%, fixation over-
night) and inspected on polycarbonate filters (PC, 0.2 µm, 
25 mm)—hereafter Lugol- and PFA-preserved samples, 
respectively (see Supplementary Figure S1 for a schematic 

Table 1  Model pathosystems used for comparative CFW and WGA staining, including their isolation date and location. References 
(Ref.) include the chytrid descriptions (if available). Genbank accession numbers are listed in the Supplementary (Table S3)

Host-chytrid system Taxa ID Date Location Ref.

Asterionella formosa - Rhizophydiales sp. #1 Diatom AST-A1 Nov-2016 Lake Stechlin (GER) -
Rhizophydiales AST-CHY1 Dec-2016 Lake Stechlin (GER)

Ulnaria sp. - Zygophlyctis planktonica Diatom HS-SYN2 Apr-2015 Haussee (GER) [43]
Zygophlyctidiales SVdW-SYN-CHY1 Feb-2016 Melzersee (GER)

Staurastrum sp. - Chytridiales sp. Desmid STAU-ULLS3 Sep-2017 Ullswater (GBR) -
Chytridiales STAU-CHY RBA3 Oct-2017 Rimov reservoir (CZE)

Staurodesmus - Rhizophydiales sp. #2 Desmid STAU-ULLS2 Sep-2017 Ullswater (GBR) -
Rhizophydiales STAU-CHY6 Sep-2017 Dormant water (GBR)

Staurastrum sp. -Rhizophydiales sp. #3 Desmid STAU-ULLS3 Sep-2017 Ullswater (GBR) -
Rhizophydiales STAU-CHY RBA5 Oct-2017 Rimov reservoir (CZE)

Staurastrum sp. - Staurastromyces oculus Desmid STAU1 Oct-2014 Lake Stechlin (GER) [44]
Rhizophydiales STAU-CHY3 Jul-2015 Lake Stechlin (GER)

Eudorina elegans - Algomyces stechlinensis Green algae PAN1 Oct-2014 Lake Stechlin (GER) [45]
Lobulomycetales SVdW- EUD3 Dec-2015 Lake Stechlin (GER)

Yamagishiella unicocca - Dangeardia mamillata Green algae PAN4 Oct-2014 Lake Stechlin (GER) [45]
Incertae sedis SVdW- EUD2 Jul-2015 Lake Stechlin (GER)

Yamagishiella unicocca - Endocoenobium eudorinae Green algae PAN4 Oct-2014 Lake Stechlin (GER) [45]
Polyphagales SVdW- EUD1 Jun-2015 Lake Stechlin (GER)
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Figure. 1  (A) Scheme of various morphological features during 
the life cycle of parasitic chytrids. Infections emerge as free-living, 
motile zoospores settle and encyst onto a phytoplankton cell [46]. 
After encystment, the parasite penetrates and expands into the host’s 
interior via hyphae-like rhizoids, through which nutrients are con-
veyed from the host to the parasite. The host-derived nutrients nur-
ture the exterior structure to a mature sporangium, which produces 
and releases new zoospores into the ambient water upon maturation, 
leaving behind an empty sporangium. To overcome periods of low 
host abundances, many chytrids can produce resting spores, sexually 
[46] or asexually [44]. (B–O) Microscopy images of various phyto-
plankton‒chytrid model systems used for the comparative CFW and 

WGA staining (data shown in Fig. 2). B Asterionella–Rhizophydiales 
#1, C, I, L, N Ulnaria–Zygophlyctis, D, H, J Staurastrum–Chytridi-
ales, E Staurastrum–Staurastromyces, F, M Eudorina–Algomyces, G 
Yamagishiella–Endocoenobium, and O Staurastrum–Rhizophydiales. 
K shows the rather uncommon zoospores of Endocoenobium, which 
develop immotile spores with a cell wall and rhizoid-like structures 
for host attachment. White scale bars are 10  µm. Abbreviations: 
DIC differential interference contrast. CFW Calcofluor White, WGA 
wheat germ agglutinin, en—encysted zoospores (host-associated), en 
(f)—encysted zoospores (freely suspended, not host-associated), im/
ma—immature/mature sporangia, emp—empty sporangia, rest (sex/
asex)—resting spores (sexual/asexual), rhi—rhizoids, st—stalks
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workflow). In this way, we minimized the exposure of the 
applicant to toxic volatile PFA during sample preparation 
and microscopy. In addition, we stained live cells (no pres-
ervation, day 0), applying the same staining protocol as for 
Lugol-preserved samples but without Lugol addition. Lugol-
preserved samples were stored in 2-mL tubes at 4 °C, while 
PFA-preserved samples were stored on filters at -20 °C. 
Prior microscopy, Lugol-preserved samples were destained 
from Lugol and stained with CFW and WGA, as described 
above but with separate CFW and WGA staining (no dual 
staining). PFA-preserved cells were stained in liquid and 
thereafter filtered onto PC filters if cells were analyzed 
immediately; or, if stored at -20 °C, cells were filtered first 
and thereafter stained on the filter. In the latter case, the 
filters were submerged in the dye solution for 15 min in 
darkness and washed twice with 1 mL CHU-10 medium and 
1 mL MilliQ to remove excess dye, followed by air-drying.

Chytrid sporangia and Asterionella cells were counted 
in triplicates under the microscope at 300 × magnifica-
tion, using three fluorescence channels (CFW: 387/11 
excitation/442/46 emission, WGA: 482/35  nm excita-
tion/536/40 nm emission, and chlorophyll autofluorescence: 
635/18 nm excitation/680/42 nm emission). In total, we 
counted ~ 300–1,200 Asterionella cells (non-infected and 
infected) and ~ 50–500 encystments/sporangia per replicate 
(n = 3–4 chambers or filters). Since single Asterionella cells 
could carry multiple infections, we report the ratio of total 
host cells to chytrid infections (the latter defined as the sum 
of encysted zoospores and im-/mature sporangia) instead of 
reporting the infection prevalence (which does not account 
for multiple infections on single host cells). CFW-stained 
filters displayed a high background fluorescence, which pre-
cluded the determination of meaningful sporangia counts. 
CFW-stained sporangia were consequently not analyzed on 
filters (but in Utermöhl chambers).

After counting, we imaged the fluorescent signal of 
WGA-stained sporangia and chlorophyll-autofluorescent 
Asterionella cells. CFW-stained sporangia were also imaged 
but the CFW images turned out to be overexposed, and thus, 
they were not used for any further data processing. We took 
20 z-stack images (521 × 521 µm, 0.4 µm increments over 
10–15 µm depth, Nikon DS-Ri2 camera, 16 MP) per rep-
licate (n = 3–4 chambers or filters), each image covering 
several Asterionella colonies with and without infections. 
Images were always taken with the same settings (e.g., light 
intensity, gain, and exposure time), except that the auto-
fluorescent signal of Lugol-preserved Asterionella cells 
was amplified through a higher gain (20.9x) as compared to 
PFA-preserved cells (1.8 × gain). This higher gain was cho-
sen since the autofluorescence of Lugol-preserved cells was 
otherwise poorly visible. Fluorescence intensities of WGA-
stained sporangia and autofluorescent Asterionella cells were 

analyzed on the mono-color images from the WGA and chlo-
rophyll autofluorescence channels, respectively. Each z-stack 
was merged to a composite image with one focal plane (NIS-
Elements AR software, v. 5.01.00, function: extended depth 
of focus) and further processed in ImageJ (v.1.51p) [47]. In 
ImageJ, color images were converted into 16-bit images, 
followed by thresholding to separate bright foreground pix-
els (fluorescent sporangia or Asterionella cells) from dark 
background pixels. The fluorescence intensity in the hereby 
separated cells was analyzed as mean grey values via particle 
analysis (function: analyze particles). Only chytrid cells and 
Asterionella cells emitted a fluorescence above the thresh-
old on the WGA and chlorophyll-autofluorescent images, 
respectively, and thus only those cells were included in the 
final data set.

Imaging Flow Cytometry of WGA‑Stained Sporangia

A sub-sample of the WGA-stained Asterionella‒Rhizo-
phydiales co-culture (no fixative, 5 µg WGA  mL−1) was 
pre-filtered through a 100 µm cell strainer, to avoid clog-
ging the tubes of the flow cytometer (Asterionella colo-
nies were mostly < 100 µm). The filtrate was split into 
two—one for flow cytometry and one for microscopy 
analyses. Flow cytometry was conducted with an imaging 
flow cytometer (ImageStream®X MK II, Luminex Cor-
poration, US) equipped with three lasers (488 nm/200 
mW, 561  nm/200 mW, and 785  nm/80 mW) and two 
CCD-cameras [48, 49]. Measurements were performed 
with laser intensities of 488 nm/1 mW, 561 nm/40 mW, 
and 785 nm/0.5 mW [the intensity of the 561 nm laser 
was reduced by a neutral density-filter (optical density 
1.0), and 40 mW refers to the original laser intensity]. 
Dulbecco`s phosphate-buffered saline without calcium 
and magnesium (Biowest, Nuaillé, France) was used as 
a sheath-fluid. For each triplicate, ~ 50 µL were analyzed 
automatically at 200 × magnification (120 × 512 µm field 
of view, numeric aperture 0.5, pixel size 1 × 1 µm). Data 
acquisition with the INSPIRE software (v. 201.1.0.693) 
was finished when 1,000 events (including Asterionella 
cells and associated sporangia but excluding speed cali-
bration beads) were measured. Infections were counted 
based on the images for WGA fluorescence (488 nm exci-
tation, 528/65 nm emission), brightfield, and autofluores-
cence (488 nm excitation, 702/85 nm emission) using the 
IDEAS software (v. 6.2.187.0). As a direct comparison, 
Asterionella cells and associated sporangia were counted 
in Utermöhl chambers (triplicates) via microscopy, as 
described above. CFW-stained sporangia were not ana-
lyzed via imaging flow cytometry since the instrument was 
not equipped with a UV laser, as this laser has a shorter 
lifetime and is more expensive than the ones used herein.
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CFW and WGA Staining of Field‑Sampled 
Communities

Mixed plankton communities were sampled with a plank-
ton net (HydroBios, 25 µm mesh size) from surface waters 
(0–5 m) in a mesotrophic lake (Lake Stechlin, 53°08′34.6"N 
and 13°01′41.9"E) and a coastal station in the Baltic Sea 
(54°08.76'N and 11°50,58'E, salinity 8–20‰, both North-
ern Germany) in 2018, 2020 and 2021, fixed with Lugol 
and stored at 4 °C. Before microscopy, samples were dual-
stained (5 µg dye  mL−1, after destaining from Lugol), as 
described above, and inspected in Utermöhl chambers at 
200–400 × magnification. We were able to detect 1–156 spo-
rangia per phytoplankton taxon, which were evaluated in 
parallel for their positive WGA and CFW-staining. A step-
by-step protocol for the dual-staining method, and statisti-
cal analyses are included in the supplementary information 
(Text S2 and S4).

Results

Effectivity of CFW and WGA Staining for Various 
Morphological Features of Chytrids

Morphological features of chytrids in the model systems 
showed a similar CFW and WGA staining pattern after dual-
staining, with some exceptions (Figs. 1 and 2). Encysted 
zoospores and sporangia were visible to ≥ 90% with both 

dyes in most systems. As an exception, encysted zoospores 
and im-/mature sporangia in the Ulnaria‒Zygophlyctis, 
Yamagishiella‒Dangeardia, and Yamagishiella‒Endocoeno-
bium systems were stained (entirely or partly) to 0‒80% 
with WGA, while CFW stained those features to ≥ 90% (e.g., 
Fig. 1C and L for Ulnaria‒Zygophlyctis, and 1G for Yamag-
ishiella‒Endocoenobium, Fig. 2). Empty sporangia associ-
ated with post-infected host cells were stained with both 
dyes to 100% in all systems. Resting spores and rhizoids, 
if present, were mostly more effectively stained with WGA 
(10–100%) than with CFW (0–100%). In four out of nine 
model systems, stalks were part of the chytrid morphol-
ogy and they were stained with CFW (80–100%) and WGA 
(20–100%). Free-swimming zoospores commonly do not 
have a chitinous cell wall and they are, therefore, not stained 
by chitin-binding dyes. Zoospores of Endocoenobium, how-
ever, encyst freely in the water and develop a special type 
of immotile spores with a cell wall and rhizoid-like struc-
tures through which they attach to their motile host [45]. 
Those immotile infectious spores were entirely or at least 
partly stained with CFW and WGA (Fig. 1K , data are not 
included in Fig. 2 since this feature was only observed in 
one pathosystem).

Interestingly, host-associated encysted zoospores and 
im-/mature sporangia were stained differently in live vs. 
Lugol-preserved samples in the three tested pathosystems. 
WGA failed to visualize those features in live samples of 
Staurastrum-Staurastromyces and Ulnaria-Zygophlyctis, 
whereas the staining was successful after Lugol preservation 

Fig. 2  Effectivity of CFW and WGA staining for various morpho-
logical features of chytrids indiverse phytoplankton‒chytrid model 
systems. The color scale and detailed numbers indicate the fraction 
of entirely/partly stained or unstained features. In four pathosys-
tems, rhizoids were presumably present but not visible after staining 

(no numbers given). Grey boxes indicate features that could not be 
tested for their staining patterns since they were not developed by 
the chytrids in our samples. Empty sporangia of Rhizophydiales on 
Asterionella dissolved after zoospore discharge and could thus not be 
evaluated. Abbreviations are defined in the caption of Fig. 1
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(Fig. 3). In the Asterionella–Rhizophydiales system, such a 
different staining pattern was not apparent since WGA visu-
alized encysted zoospores and sporangia in both live and 
Lugol-preserved samples. In contrast to WGA, CFW stained 
encysted zoospores and sporangia in both live and Lugol-
preserved samples in all three systems (Supplementary Fig-
ure S2). Empty sporangia were stained with CFW and WGA 
in live and Lugol-preserved samples in all three systems.

Dye Concentrations and Storage Times, Utermöhl 
(Lugol) vs. Filter (PFA), and Microscopy vs. Flow 
Cytometry (Asterionella‒Rhizophydiales System)

The mean ratio of total Asterionella cells to chytrid infec-
tions (i.e., the sum of encysted zoospores and im-/mature 
sporangia) was 2.9 ± 0.4 (mean ± s.d., n = 87). This ratio 
was independent of the dye concentration (1‒25 µg  mL−1, 
p > 0.05, Df = 8) and storage time (1 day‒6 months, p > 0.05, 
Df = 7, Kruskal–Wallis H-test, Fig. 4A, B). The intensity of 
the green fluorescence of WGA-stained sporangia was rather 
similar across different dye concentrations and storage times 
(Fig. 4C, D). Intensities of the green fluorescence of WGA-
stained sporangia were lower on PC filters (PFA-preserved) 
than in Utermöhl chambers (Lugol-preserved, p < 0.05, 
Kruskal–Wallis, Df = 4). Nonetheless, WGA-stained spo-
rangia were well distinguishable from the background flu-
orescence on/in both filters and Utermöhl chambers. The 
diatom’s autofluorescence was highest in live samples, and 
if a fixative was added, it was better preserved by PFA than 
by Lugol.

In addition to microscopy, we successfully enumerated 
WGA-stained sporangia in the Asterionella‒Rhizophydiales 
model system via imaging flow cytometry. Cells were well 
recognizable on the bright field, autofluorescence, and WGA 
images (Fig. 5A). Consequently, flow cytometry and micros-
copy yielded similar estimates for host abundances and 
infection prevalences (host abundances: 125,571 ± 12,232 
and 116,354 ± 12,592 cells  mL−1, p = 0.50, infection preva-
lence: 22 ± 2 and 23 ± 2%, p = 0.63, Df = 5, respectively, 
t-test, Fig. 5B).

CFW and WGA Staining of Field‑Sampled Chytrid 
Sporangia

In field-sampled plankton communities, we observed spo-
rangia associated with diverse phytoplankton taxa, mostly 
including cyanobacteria and diatoms (Table 2). As a key dif-
ference between dyes, WGA effectively illuminated chytrid 
sporangia that were associated with the dinoflagellates Peri-
dinium and Ceratium. By contrast, CFW brightly stained the 
cellulosic thecae of those dinoflagellates, thereby preventing 
the visualization of the associated sporangia (Supplementary 
Figure S3). The dual-staining was successful in limnic and 
oligo-/mesohaline water.

Discussion

Chytridiomycota appear almost pervasive in freshwater and 
coastal marine environments as their detection in recent 
DNA sequencing assays has substantially ramped up their 
diversity and biogeography [28, 41, 50–53]. Hence, to 
quantify their ecological and economical imprint, there is a 
need to detect chytrid–phytoplankton associations via direct 
observations. Our methodological discussion therefore aims 
to facilitate a simple, reliable, and standardized screening 
of chytrid infections in various microplankton communities 
during case studies and routine monitoring programs.

Intercomparison of CFW and WGA Staining

The staining patterns of various morphological features in 
the model systems were similar yet not identical for CFW 
and WGA. In live samples, WGA did not stain encysted 
and im-/mature sporangia in the Staurastrum–Staurastro-
myces and Ulnaria–Zygophlyctis cultures (Fig. 3). Those 
phytoplankton cells and chytrid sporangia were presum-
ably coated with a polysaccharide-rich mucilage [54, 55], 
which results from the secretion of polymeric substances 
from phytoplankton [55–59] and chytrid cells [60]. Such cell 
coatings may limit the accessibility of WGA to the fungal 
cell walls since WGA is a large macromolecule (~ 35 kDa), 
which poorly diffuses into gelatinous coatings (mucilage) of 

Fig. 3  Micrographs depicting the WGA staining pattern in the Stau-
rastrum‒Staurastromyces pathosystem in live (no preservation) and 
Lugol-preserved samples. In live samples, WGA visualized empty 
but not mature sporangia (non-filled and filled arrowheads, respec-
tively). In Lugol-preserved samples, by contrast, mature sporangia 
were stained with WGA. See Supplementary Figure S2 for exemplary 
CFW images. DIC—differential interference contrast, WGA—wheat 
germ agglutinin
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Fig. 4  Microscopy analyses of the Asterionella‒Rhizophydiales 
pathosystem after CFW and WGA staining using different dye con-
centrations (A, C) and sample storage times (B, D). A and B Cells 
were counted in Utermöhl chambers (Lugol fixation) and on polycar-
bonate filters (PFA fixation). Samples from day 0 represent live sam-
ples (no preservation). Shown are mean ± s.d. (n = 3–4, s.d. ≤ 22%). C 
and D Fluorescence intensity emitted by WGA-stained sporangia and 
chlorophyll-autofluorescent Asterionella, determined via image analy-
ses. Statistical differences in the data distribution between different 
groups are indicated by different letters (a‒d, Kruskal–Wallis test, 

p > 0.05). Multiple group comparisons were run separately for WGA-
stained sporangia and chlorophyll-autofluorescent Asterionella cells 
at different dye concentrations and storage times in Utermöhl cham-
bers and on filters (indicated by the different colors and symbols). 
The chlorophyll autofluorescence of Lugol-fixed Asterionella cells 
was rather low compared to PFA-fixed cells, and thus, Lugol-fixed 
cells in Utermöhl chambers were imaged at a higher gain (20.9x) than 
PFA-fixed cells on filters 1.8x. Fluorescence data of CFW-stained 
sporangia are not shown due to overexposure (i.e., cells displayed 
max. color values)

Fig. 5  A Visualization of WGA-stained sporangia in the Asteri-
onella–Rhizophydiales pathosystem via imaging flow cytometry. The 
green fluorescence (WGA) depicts mature sporangia (filled arrow-
head) and one post-infected Asterionella cell with rhizoids (open 

arrowhead). B The obtained infection prevalence was statistically not 
significantly different between microscopy and flow cytometry analy-
ses (t-test, p = 0.63, Df = 5)
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phytoplankton cells or higher fungi [39, 61]. After Lugol fix-
ation, the mucilage likely dispersed, allowing for the positive 
WGA-staining (Fig. 3). In support of this observation, lectin 
binding has been shown to improve after chemical treatment 
(e.g., KOH or trypsin hydrolysis) which unmasks the muci-
lage on higher fungi (Fusarium) and the human placenta [61, 
62], while KOH has also been used previously during CFW-
based chytrid staining [63]. Similarly, WGA was shown to 
stain intracellular rhizoids in empty frustules of Asterionella 
but not in live cells [39], indicating that WGA poorly pen-
etrates through intact cell walls and membranes. CFW is 
instead a comparably small hydrophilic molecule (~ 1 kDa) 
which may more easily interfuse gelatinous layers and cell 
structures, as indicated by the positive CFW staining in live 
cells (Figure S2). Sample fixation is, therefore, more cru-
cial for WGA than for CFW staining, and we recommend 
fixing the samples for a couple of hours (overnight) before 
microscopy, to allow for an effective WGA binding to the 
fungal cell walls.

Rhizoids were WGA stained in five out of nine systems, 
while CFW stained those in only three systems (Fig. 2). In 
the remaining systems, the rhizoids were likely unbranched 
and rather short, and thus, their visualization may require a 
higher resolution technique than light microscopy, such as 
transmission electron microscopy [44]. In a few instances, 
encysted and im-/mature sporangia, and stalks were stained 
less effectively with WGA than with CFW, even after sample 

fixation (Fig. 2). Besides the mentioned mucilage, which 
may partly remain after Lugol fixation, WGA binding was 
potentially hampered by a multi-layered structure of the fun-
gal cell wall. In higher fungi (Aspergillus, Cryptococcus, 
and Saccharomyces), cell walls can consist of two layers 
of which the outer layer is without chitin [64, 65], while 
the inner layer includes chitin, but the chitin-binding sites 
are presumably poorly accessible to WGA. The observed 
differential pattern in WGA-staining between species and 
even between different morphological features of the same 
species may thus result from cell coatings with carbohy-
drates, multilayered cell wall structure [60], and/or vari-
able contents of N-acetylglucosamine in chytrid cell walls, 
potentially limiting the WGA-binding. Differential staining 
patterns in WGA vs. CFW stained cells, and live vs. fixed 
samples could therefore indicate differences in chytrid tax-
onomy and morphology.

In previous studies, a wide range of dye concentrations 
has been applied to visualize fungal cell walls—3‒50 µg 
WGA  mL−1 [37, 39, 41, 62, 66, 67] and 25‒10,000 µg 
CFW  mL−1 [37–39, 41, 66, 68]. By comparison, we tested 
concentrations in the lower range (1, 5, and 25 µg  mL−1). 
The lowest concentration (1 µg  mL−1), and hence the most 
cost-efficient option, was sufficient for both WGA and CFW-
based identification and enumeration of chytrid sporangia 
(Fig. 4A). The appropriate dye concentration may, however, 
depend on the chitin concentration in the water. We thus 

Table 2  Dual-staining of chytrid sporangia that were associated with various phytoplankton taxa in natural water

* LS – Lake Stechlin (freshwater), BS – Baltic Sea (coastal)
† Brightly CFW-stained thecae obscured the visualization of associated sporangia
‡ Cellulosic lorica of the host were also stained with CFW 

Phytoplankton No. of sporangia Sampling date

Group Genus CFW WGA dd/mm/20yy*

Cyanobacteria Planktothrix 156 146 18/04/18 (LS)
Cyanobacteria Pseudanabaena 61 61 25/08/18 (LS)
Cyanobacteria Dolichospermum (heterocytes) 6 6 25/08/18 (LS)
Cyanobacteria Dolichospermum (vegetative cells) 6 5 25/08/18 (LS)
Cyanobacteria Dolichospermum (vegetative cells) 40 40 06/07/21 (BS)
Diatoms Cerataulina 40 40 01/12/20 (BS)
Diatoms Chaetoceros 40 40 13/10/20 (BS)
Diatoms Fragilaria 40 39 18/04/18 (LS)
Diatoms Fragilaria 8 7 16/11/18 (LS)
Diatoms Pseudo-nitzschia 40 40 01/12/20 (BS)
Diatoms Synedra 24 24 18/04/18 (LS)
Dinoflagellates Peridinium 0† 20 16/11/18 (LS)
Dinoflagellates Ceratium 0† 13 25/08/18 (LS)
Desmids Staurastrum 42 42 16/11/18 (LS)
Chlorophyta Eudorina 12 12 25/08/18 (LS)
Chrysophyta Dinobryon 1‡ 1 25/08/18 (LS)
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recommend 5 µg dye  mL−1, as chitin concentrations in natu-
ral waters are expected to be in the lower µg  mL−1 range 
[69]. CFW-stained chytrids were difficult to distinguish 
from the background fluorescence on PC filters after stain-
ing with 1 µg CFW  mL−1, and even indistinguishable from 
the background at 5 and 25 µg CFW  mL−1. Rasconi et al. 
[38] reported that chytrids were still visible on filters that 
were stained with 35 µg CFW  mL−1, but also mentioned that 
higher dye concentrations precluded any accurate assess-
ment of sporangia.

Inspecting chytrid infections in Utermöhl chambers was 
beneficial for the host‒parasite recognition since (1) the 
contrast between fungal cell walls and the background fluo-
rescence was more distinct in Utermöhl chambers than on 
filters, and (2) host cells and their associated parasites could 
be inspected in parallel under the bright field and fluores-
cence channels. In this way, also non-fluorescent structures 
of the phytoplankton host (e.g., silica frustules, spines, 
or flagella) were visible in Utermöhl chambers, whereas 
those morphological structures were poorly visible on fil-
ters. Moreover, Lugol is less toxic than PFA, and Utermöhl 
chambers are the standard tool in phytoplankton ecology 
and monitoring [70]. Accordingly, chytrid staining in those 
chambers can be readily implemented in, e.g., phytoplank-
ton monitoring programs. The host’s autofluorescence was 
well preserved in PFA-fixed cells (as compared to Lugol-
fixed cells), which we stored on filters, while PFA-fixation 
is also applicable to liquid samples and subsequent flow 
cytometry. Filters can furthermore be stored long-termed 
at -20 °C, even after microscopy, and filter samples are well 
compatible with bacterial enumeration and identification 
assays [11, 71].

Cross‑Reactivity and False Positives

CFW binds to beta-1,4 or 1,3-linked polysaccharide poly-
mers, as present in chitin but also in cellulose, keratin, col-
lagen, and elastin [72]. CFW thus, as a critical disadvantage, 
stains cellulosic cell walls of multiple phytoplankton groups, 
including thecate dinoflagellates and some desmids and dia-
toms [39, 66, 73, 74]. Likewise, in our field samples, the cel-
lulosic theca of Peridinium and Ceratium (dinoflagellates) 
were brightly stained with CFW, preventing the visualization 
of their associated sporangia (Table 2, Supplementary Fig-
ure S3). This may explain the hitherto relatively few obser-
vations of chytrids associated with dinoflagellates, and if 
they were detected, dinoflagellates had lost their thecae at 
advanced infection stages [75–77]. Moreover, CFW binds 
to the cellulosic cell walls of oomycetes [37, 78], which 
can be misidentified as chytrids. Oomycetes and chytrids 
are dissimilar in their taxonomy (oomycetes are grouped 
into stramenopiles, together with diatoms) [79]. Yet, both 
resemble each other in their morphology and lifestyle since 

the partly globose, ovoid sporangia and free-swimming zoo-
spores of oomycetes can parasitize phytoplankton, similar to 
chytrids. As a distinction, however, sporangia of oomycetes 
are mostly endobiotic (develop inside the host cell), in con-
trast to the mostly epibiotic sporangia of chytrids [80]. WGA 
usually does not stain oomycetes since their cell walls lack 
chitin, but traces of chitin [79, 81] and a rare case of WGA-
staining on oomycetes have been reported [82]. Parasites 
belonging to the fungi(-like) lineages Cryptomycota and 
Aphelida may also be misidentified as chytrids. Yet, there is 
mounting evidence that parasitic Cryptomycota often lack 
chitinous cell walls [83, 84] and act as hyperparasites of 
chytrids rather than as parasites of phytoplankton [85], while 
Aphelida are mostly known as endobiotic parasites of phyto-
plankton [86], like oomycetes. Extracellular infective cysts 
of Cryptomycota and Aphelida, however, can contain chitin 
and show positive WGA-staining [87, 88]. We additionally 
detected WGA-stained choanoflagellates in association with 
phytoplankton cells, as shown previously [89, 90], and also 
a positive CFW staining of those flagellates can be expected 
[90]. Choanoflagellates, however, are distinct in their mor-
phology, with their funnel-shaped collar and ovoid/spherical 
basal cell body (Figure S4).

WGA cross-reacts with N-acetylglucosamine residues in 
the peptidoglycan layer of Gram-positive bacteria [91]. Yet, 
those bacteria are mostly smaller (1‒2 µm) than sporangia 
(5‒30 µm, if matured), and their false identification can be 
avoided by DAPI-counterstaining, to confirm that the target 
cell is a eukaryote with a distinct DNA-containing nucleus 
[41]. WGA staining can moreover be combined with other 
fluorescent dyes, e.g., during CARD-FISH [11, 71], as various 
WGA conjugates (with different wavelengths) are commer-
cially available. CFW emits blue light after UV excitation, and 
it therefore overlaps with DAPI, making DAPI co-staining not 
applicable, but co-staining with the alternative nucleic acid 
stain SYTOX green has been applied successfully [92].

During our field sampling, we used neutral and acidic 
Lugol for sample preservation and realized a pH effect on 
the staining pattern. That is, we observed loosely aggre-
gated flocs that were stained with WGA when using acidic 
instead of neutral Lugol (final pH in the samples was 4 and 
7, respectively, Supplementary Figure S5). This pH effect 
was less prominent for CFW, i.e., flocs were stained neither 
at acidic nor neutral pH. We thus recommend using neutral 
or alkaline instead of acidic Lugol for observing chytrids. 
Yet, neutral or alkaline Lugol preserve the silica cell walls of 
diatoms less well than acidic Lugol, and thus short storage 
times should be considered, while the preservation of coc-
colithophorids requires neutral/alkaline Lugol because of 
their calcareous coccoliths [93]. In conclusion, the staining 
with CFW and WGA is broadly applicable to various study 
designs, but stain-specific advantages and disadvantages 
need to be considered (summarized in Table 3).
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Imaging Flow Cytometry

We validated imaging flow cytometry as a time-efficient, 
high throughput method to quantify chytrid–phytoplankton 
associations. The flow cytometer imaged 1,000 host cells 
within 10–15 min, whereas it took 60–90 min to count 1,300 
cells under the microscope. In this way, a large number of 
cells could be evaluated quickly via flow cytometry, while 
the measuring capacity of the instrument is even higher 
(5,000 particles  s−1). Both methods agreed in the obtained 
host cell abundances and infection prevalence, with a similar 

accuracy (s.d. of the mean cell abundances was ca. 10%). 
As a proof of concept, we successfully separated the Aste-
rionella cells from chytrid sporangia on the flow cytometry 
images (see Supplementary Figure S6 for an image exam-
ple), which could be used for automated image analyses. 
Such automated analyses might be particularly applicable 
to well-defined, homogeneous co-cultures. Their application 
on more heterogeneous field-sampled populations, however, 
is expected to require more advanced algorithms for auto-
mated cell distinction and remains to be tested. In addition to 
cell counting, noninfected and infected phytoplankton cells 

Table 3  Advantages ( +) and disadvantages (–) of CFW and WGA staining for the detection of chytrids

*Based on entirely/partly stained features as shown in Fig. 2
 ± indicates a neutral evaluation.

CFW WGA 

Binding specificity  ± non-specific fluorochrome that binds to beta-(1,4) 
and (1.3)-glucans, including chitin

 + chitin-binding lectin, which specifically binds to 
N-acetyl-D-glucosamine (in chitin) and N-acetyl-
D-neuraminic (sialic) acid residues

Cross-reactivity – cross-reactivity with cellulose, chitosan, keratin, 
collagen, and elastin

– cross-reactivity with peptidoglycan layer of Gram-
positive bacteria

– binding affinity to cellulosic cell walls of phyto-
plankton can hamper a successful distinction 
between phytoplankton cells and associated 
sporangia

– oomycetes with cellulosic cell walls can be misi-
dentified as chytrids

– binding to cell walls of choanoflagellates expected – binding to cell walls of choanoflagellates observed
Staining efficiency*  + Sporangia: 88–100% – Sporangia: 0–100%

– Rhizoids: 0–100%  + Rhizoids: 100%
 + Resting spores: 100% – Resting spores: 8–100%
 + Stalks: 80–100% – Stalks: 0–100%

Fluorescence – fixed wavelength  (Exmax/Emmax 355/433 nm)  + flexible wavelengths: WGA lectins are commercially 
available with different conjugated fluorophores 
(e.g., Alexa-Fluor 350, 488, 555, 647, etc., Fluo-
rescein)

Co-staining  + DAPI co-staining is not possible (but co-staining 
with SYTOX green has been applied)

 + DAPI co-staining possible, combined applications 
with CARD-FISH have been published

Sample preparation  + Utermöhl chambers: good applicability  + Utermöhl chambers: good applicability
– PC filters: limited applicability (high  + PC filters: good applicability (moderate

background already at 1 µg CFW  mL−1) background even at 25 µg WGA  mL−1)
 ± Flow cytometry: not tested herein  + Flow cytometry: good applicability

Sample fixation  + live, non-fixed cells: successful staining of spo-
rangia

– live, non-fixed: partly unsuccessful staining of 
mature sporangia (limited accessibility to WGA 
binding sites)

 + Lugol and PFA-preserved cells: successful staining 
of sporangia

 + Lugol and PFA-preserved cells: successful staining 
of sporangia

 + acidic Lugol did not induce formation/visualization 
of unspecific CFW-stained flocs

– acidic Lugol induced formation/visualization of 
unspecific WGA-stained flocs (neutral/alkaline 
Lugol preferable)

Storage + room temperature – -20 °C, repeated freeze/thawing cycles should be 
avoided

 + long-term storage (> 1 year)  + stable for at least one year (manufacturer instruc-
tions)

Costs  + inexpensive (0.10 USD per 1 mL sample)  + inexpensive (0.40 USD per 1 mL sample)
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could potentially also be sampled individually via intelligent 
image-activated cell sorting (iIACS) [94] and thereafter used 
for, e.g., single-cell genome/transcriptome sequencing.

Recommendations

Detecting chytrid infections in mixed field populations can 
be difficult for the untrained eye. To facilitate the screening 
of chytrids via microscopy, we recommend:

1. CFW–WGA dual staining after cell fixation (overnight), 
to more reliably identify any cross-reactivities and false 
positives/negatives, as compared to mono-staining 
(Table 3, see staining protocol in the supplementary 
information, Text S2,).

2. Using an inverted microscope, equipped with a bright 
field and a long-path filter block (e.g., excitation 377/50, 
emission 415 DAPI LP). Thereby, the sample can con-
currently be illuminated/excited with white light and UV 
light in Utermöhl chambers, visualizing both the phyto-
plankton host and CFW-stained sporangia (no switching 
between filter blocks needed).

3. Searching for well-defined globose to ovoid structures 
(i.e., sporangia with distinct cell walls and little shape 
irregularity). Those sporangia and their infected host 
usually display no or little autofluorescence, as com-
pared to non-infected phytoplankton cells (but note that 
the host’s autofluorescence fades within days after Lugol 
preservation while it is preserved longer by PFA).

4. The re-occurrence of sporangia on the same phytoplank-
ton taxon can be evaluated as a positive sign of chytrid 
infections since chytrids are often host-specific (at the 
species or genus level) [85].

Using these guidelines, we detected multiple, partly unde-
scribed chytrid–phytoplankton associations in a freshwater 
and coastal system (Table 2). Hence, our intercomparison 
and recommendations shall aid in detecting chytrid infec-
tions also in other habitats, to advance our mechanistic and 
quantitative understanding of the effects of chytrid epidem-
ics on trophic interactions and element cycling in diverse 
aquatic environments.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 021- 01893-7.
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